Suppr超能文献

一种基于小鼠脑电图 (EEG) 和肌电图 (EMG) 数据简单统计特征的自动睡眠分期工具。

An automated sleep staging tool based on simple statistical features of mice electroencephalography (EEG) and electromyography (EMG) data.

机构信息

Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan.

Department of Systems Biology, Institute of Life Science, Kurume University, Fukuoka, Japan.

出版信息

Eur J Neurosci. 2024 Oct;60(7):5467-5486. doi: 10.1111/ejn.16465. Epub 2024 Jul 28.

Abstract

Electroencephalogram (EEG) and electromyogram (EMG) are fundamental tools in sleep research. However, investigations into the statistical properties of rodent EEG/EMG signals in the sleep-wake cycle have been limited. The lack of standard criteria in defining sleep stages forces researchers to rely on human expertise to inspect EEG/EMG. The recent increasing demand for analysing large-scale and long-term data has been overwhelming the capabilities of human experts. In this study, we explored the statistical features of EEG signals in the sleep-wake cycle. We found that the normalized EEG power density profile changes its lower and higher frequency powers to a comparable degree in the opposite direction, pivoting around 20-30 Hz between the NREM sleep and the active brain state. We also found that REM sleep has a normalized EEG power density profile that overlaps with wakefulness and a characteristic reduction in the EMG signal. Based on these observations, we proposed three simple statistical features that could span a 3D space. Each sleep-wake stage formed a separate cluster close to a normal distribution in the 3D space. Notably, the suggested features are a natural extension of the conventional definition, making it useful for experts to intuitively interpret the EEG/EMG signal alterations caused by genetic mutations or experimental treatments. In addition, we developed an unsupervised automatic staging algorithm based on these features. The developed algorithm is a valuable tool for expediting the quantitative evaluation of EEG/EMG signals so that researchers can utilize the recent high-throughput genetic or pharmacological methods for sleep research.

摘要

脑电图 (EEG) 和肌电图 (EMG) 是睡眠研究的基本工具。然而,对于睡眠-觉醒周期中啮齿动物 EEG/EMG 信号的统计特性的研究还很有限。在定义睡眠阶段时缺乏标准准则,迫使研究人员依赖人类专业知识来检查 EEG/EMG。最近对分析大规模和长期数据的需求不断增加,已经超出了人类专家的能力。在这项研究中,我们探索了睡眠-觉醒周期中 EEG 信号的统计特征。我们发现,归一化 EEG 功率密度谱在 NREM 睡眠和活跃脑状态之间以 20-30 Hz 为中心,以相反的方向改变其低频和高频功率,使其达到可比的程度。我们还发现,快速眼动睡眠具有与觉醒重叠的归一化 EEG 功率密度谱,以及肌电图信号的特征性降低。基于这些观察结果,我们提出了三个简单的统计特征,可以跨越三维空间。每个睡眠-觉醒阶段在三维空间中形成一个单独的簇,接近正态分布。值得注意的是,所提出的特征是对传统定义的自然扩展,使专家能够直观地解释由基因突变或实验处理引起的 EEG/EMG 信号变化。此外,我们还基于这些特征开发了一种无监督的自动分期算法。所开发的算法是加速 EEG/EMG 信号定量评估的有价值工具,使研究人员能够利用最近的高通量遗传或药理学方法进行睡眠研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验