Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan.
Department of Systems Biology, Institute of Life Science, Kurume University, Fukuoka, Japan.
Eur J Neurosci. 2024 Oct;60(7):5467-5486. doi: 10.1111/ejn.16465. Epub 2024 Jul 28.
Electroencephalogram (EEG) and electromyogram (EMG) are fundamental tools in sleep research. However, investigations into the statistical properties of rodent EEG/EMG signals in the sleep-wake cycle have been limited. The lack of standard criteria in defining sleep stages forces researchers to rely on human expertise to inspect EEG/EMG. The recent increasing demand for analysing large-scale and long-term data has been overwhelming the capabilities of human experts. In this study, we explored the statistical features of EEG signals in the sleep-wake cycle. We found that the normalized EEG power density profile changes its lower and higher frequency powers to a comparable degree in the opposite direction, pivoting around 20-30 Hz between the NREM sleep and the active brain state. We also found that REM sleep has a normalized EEG power density profile that overlaps with wakefulness and a characteristic reduction in the EMG signal. Based on these observations, we proposed three simple statistical features that could span a 3D space. Each sleep-wake stage formed a separate cluster close to a normal distribution in the 3D space. Notably, the suggested features are a natural extension of the conventional definition, making it useful for experts to intuitively interpret the EEG/EMG signal alterations caused by genetic mutations or experimental treatments. In addition, we developed an unsupervised automatic staging algorithm based on these features. The developed algorithm is a valuable tool for expediting the quantitative evaluation of EEG/EMG signals so that researchers can utilize the recent high-throughput genetic or pharmacological methods for sleep research.
脑电图 (EEG) 和肌电图 (EMG) 是睡眠研究的基本工具。然而,对于睡眠-觉醒周期中啮齿动物 EEG/EMG 信号的统计特性的研究还很有限。在定义睡眠阶段时缺乏标准准则,迫使研究人员依赖人类专业知识来检查 EEG/EMG。最近对分析大规模和长期数据的需求不断增加,已经超出了人类专家的能力。在这项研究中,我们探索了睡眠-觉醒周期中 EEG 信号的统计特征。我们发现,归一化 EEG 功率密度谱在 NREM 睡眠和活跃脑状态之间以 20-30 Hz 为中心,以相反的方向改变其低频和高频功率,使其达到可比的程度。我们还发现,快速眼动睡眠具有与觉醒重叠的归一化 EEG 功率密度谱,以及肌电图信号的特征性降低。基于这些观察结果,我们提出了三个简单的统计特征,可以跨越三维空间。每个睡眠-觉醒阶段在三维空间中形成一个单独的簇,接近正态分布。值得注意的是,所提出的特征是对传统定义的自然扩展,使专家能够直观地解释由基因突变或实验处理引起的 EEG/EMG 信号变化。此外,我们还基于这些特征开发了一种无监督的自动分期算法。所开发的算法是加速 EEG/EMG 信号定量评估的有价值工具,使研究人员能够利用最近的高通量遗传或药理学方法进行睡眠研究。