Bai Risheng, He Guangyuan, Li Junyan, Li Lin, Zhang Tianjun, Wang Xingxing, Zhang Wei, Zou Yongcun, Zhang Jichao, Mei Donghai, Corma Avelino, Yu Jihong
Department State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, 46022, España.
Angew Chem Int Ed Engl. 2024 Oct 24;63(44):e202410017. doi: 10.1002/anie.202410017. Epub 2024 Sep 24.
As a fundamental industrial catalytic process, the semihydrogenation of alkynes presents a challenge in striking a balance between activity and selectivity due to the issue of over-hydrogenation. Herein, we develop an efficient catalytic system based on single-atom Pd catalysts supported on boron-containing amorphous zeolites (Pd/AZ-B), achieving the tradeoff breaking between the activity and selectivity for the selective hydrogenation of alkynes. Advanced characterizations and theoretical density functional theory calculations confirm that the incorporated B atoms in the Pd/AZ-B can not only alter the geometric and electronic properties of Pd atoms by controlling the electron migration from Pd but also mitigate the interaction between alkene and the catalyst supports. This boosts the exceptional catalytic efficacy in the semihydrogenation of phenylacetylene to styrene under mild conditions (298 K, 2 bar H), achieving a recorded turnover frequency (TOF) value of 24198 h and demonstrating 95 % selectivity to styrene at full conversion of phenylacetylene. By comparison, the heteroatom-free amorphous zeolite-anchored Pd nanoparticles and the commercial Lindlar catalyst have styrene selectivities of 73 % and 15 %, respectively, under identical reaction conditions. This work establishes a solid foundation for developing highly active and selective hydrogenation catalysts by controllably optimizing their electronic and steric properties.
作为一种基本的工业催化过程,由于过度氢化问题,炔烃的半氢化在活性和选择性之间取得平衡方面面临挑战。在此,我们开发了一种基于负载在含硼无定形沸石上的单原子钯催化剂(Pd/AZ-B)的高效催化体系,实现了炔烃选择性氢化中活性和选择性之间的权衡突破。先进的表征和理论密度泛函理论计算证实,Pd/AZ-B中引入的B原子不仅可以通过控制从Pd的电子迁移来改变Pd原子的几何和电子性质,还可以减轻烯烃与催化剂载体之间的相互作用。这提高了在温和条件(298 K,2 bar H)下苯乙炔半氢化制苯乙烯的卓越催化效率,实现了创纪录的24198 h的周转频率(TOF)值,并在苯乙炔完全转化时对苯乙烯表现出95%的选择性。相比之下,在相同反应条件下,不含杂原子的无定形沸石锚定的钯纳米颗粒和商业林德拉催化剂对苯乙烯的选择性分别为73%和15%。这项工作为通过可控地优化其电子和空间性质来开发高活性和选择性氢化催化剂奠定了坚实基础。