Kong Xianglong, Zong Xiaohang, Lei Zijin, Wang Zicong, Zhao Ying, Zhao Xudong, Zhang Junming, Liu Zhiliang, Ren Yueming, Wu Linzhi, Zhang Milin, He Fei, Yang Piaoping
College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
Small. 2024 Nov;20(45):e2405174. doi: 10.1002/smll.202405174. Epub 2024 Jul 27.
Two-dimensional (2D) van der Waals heterostructures endow individual 2D material with the novel functional structures, intriguing compositions, and fantastic interfaces, which efficiently provide a feasible route to overcome the intrinsic limitations of single 2D components and embrace the distinct features of different materials. However, the construction of 2D heterostructures with uniform heterointerfaces still poses significant challenges. Herein, a universal in-situ interfacial growth strategy is designed to controllably prepare a series of MXene-based tin selenides/sulfides with 2D van der Waals homogeneous heterostructures. Molten salt etching by-products that are usually recognized as undesirable impurities, are reasonably utilized by us to efficiently transform into different 2D nanostructures via in-situ interfacial growth. The obtained MXene-based 2D heterostructures present sandwiched structures and lamellar interlacing networks with uniform heterointerfaces, which demonstrate the efficient conversion from 3D composite to 2D heterostructures. Such 2D heterostructures significantly enhance charge transfer efficiency, chemical reversibility, and overall structural stability in the electrochemical process. Taking 2D-SnSe/MXene anode as a representative, it delivers outstanding lithium storage performance with large reversible capacities and ultrahigh capacity retention of over 97% after numerous cycles at 0.2, 1.0, and 10.0 A g current density, which suggests its tremendous application potential in lithium-ion batteries.
二维(2D)范德华异质结构赋予单个二维材料新颖的功能结构、引人入胜的组成和奇妙的界面,这有效地提供了一条可行的途径来克服单个二维组件的固有局限性,并融合不同材料的独特特性。然而,构建具有均匀异质界面的二维异质结构仍然面临重大挑战。在此,设计了一种通用的原位界面生长策略,以可控地制备一系列具有二维范德华均匀异质结构的基于MXene的硒化锡/硫化锡。通常被认为是不良杂质的熔盐蚀刻副产物,被我们合理利用,通过原位界面生长有效地转化为不同的二维纳米结构。所获得的基于MXene的二维异质结构呈现出具有均匀异质界面的夹心结构和层状交错网络,这证明了从三维复合材料到二维异质结构的有效转变。这种二维异质结构在电化学过程中显著提高了电荷转移效率、化学可逆性和整体结构稳定性。以二维-SnSe/MXene负极为例,它在0.2、1.0和10.0 A g电流密度下经过多次循环后,具有出色的锂存储性能,可逆容量大,超高容量保持率超过97%,这表明其在锂离子电池中具有巨大的应用潜力。