Manohar Prashant Uday
Department of Chemistry, Birla Institute of Technology & Science-Pilani, Pilani, Rajasthan 333031, India.
Phys Chem Chem Phys. 2024 Aug 7;26(31):21204-21212. doi: 10.1039/d4cp02265c.
We present our computational implementation of the spin-flip (SF) equation-of-motion (EOM) coupled-cluster (CC) method with singles, doubles, and (full) triples (SDT) within Q-CHEM. The inclusion of triples not only enhances the quantitative accuracy of the SF-EOM-CCSD method but also provides correct qualitative trends in the energy gaps between strongly degenerate states. To assess the accuracy, we compare our SF-EOM-CCSDT results with full configuration interaction (FCI) and complete-active-space self-consistent field second-order (CASSCF-SO) CI benchmarks to study the adiabatic energy gaps in CH and NH diradicals, vertical excitation energies in CH radicals and the bond dissociation of the HF molecule. We have implemented SF-EOM-CCSDT using both the conventional double precision (DP) and the single precision (SP) algorithms. The use of SP does not introduce any significant errors in energies and energy gaps, and, due to low cost (relative to DP), turns out to be a promising approach to widen the applicability of EOM-CCSDT to bigger molecules.
我们展示了在Q-CHEM中自旋翻转(SF)运动方程(EOM)耦合簇(CC)方法结合单激发、双激发和(全)三激发(SDT)的计算实现。包含三激发不仅提高了SF-EOM-CCSD方法的定量精度,还在强简并态之间的能隙中提供了正确的定性趋势。为了评估准确性,我们将SF-EOM-CCSDT结果与全组态相互作用(FCI)和完全活性空间自洽场二阶(CASSCF-SO)CI基准进行比较,以研究CH和NH双自由基中的绝热能隙、CH自由基中的垂直激发能以及HF分子的键解离。我们使用传统双精度(DP)和单精度(SP)算法实现了SF-EOM-CCSDT。使用SP在能量和能隙中不会引入任何显著误差,并且由于成本低(相对于DP),结果证明是一种有前途的方法,可以扩大EOM-CCSDT对更大分子的适用性。