Bedoya Valeria, Rodríguez Vladimir, Rincón Luis, Zambrano Cesar, Seijas Luis, Torres F Javier
Departamento de Ingeniería Química, Grupo de Química Computacional y Teórica (QCT-USFQ), Universidad San Francisco de Quito (USFQ), Diego de Robles S/N y Vía Interoceánica, Quito, 170901, Ecuador.
Departamento de Matemática, Universidad San Francisco de Quito (USFQ), Diego de Robles S/N y Vía Interoceánica, Quito, 170901, Ecuador.
J Mol Model. 2024 Jul 29;30(8):289. doi: 10.1007/s00894-024-06070-4.
The electron localization is a concept that allows scientists to better understand the physical and chemical properties of electronic systems. It is associated with the propensity of electron pairs with opposite spins to accumulate as well as with their response to external perturbations. This paper contains a detailed description of the design and implementation of the program KLD, which was primarily developed in our research group to elucidate electron localization in molecular systems by evaluating the information content of electron-pair density functions. KLD employs two information-based functions as a real space measure of the Fermi and Coulomb holes for same-spin electrons and shows a better resolution as compared to other methods (i.e., ELF). Information about the acceleration of the code is also included in the present work, being noticeable the reduction of wall-time calculation and the error calculation between versions.
KLD was designed to be easy to use, extend, and maintain; thus, many principles of modern software development, extensive testing, and package management were adopted. The latest version of the KLD program was created utilizing the Compute Unified Device Architecture (CUDA) version, which allows it to use the computational capacity of NVIDIA Graphics Processing Units (GPUs) for processing purposes. The electron-pair conditional density was calculated from the canonical molecular orbitals obtained at the HF/6-31G(2df,p) level, or alternatively the natural orbitals in the case of explicit correlated wavefunctions computed at the MP2/6-31G(2df,p)//HF/6-31G(2df,p) level.
电子定域是一个能让科学家更好地理解电子系统物理和化学性质的概念。它与具有相反自旋的电子对的聚集倾向以及它们对外部扰动的响应有关。本文详细描述了程序KLD的设计与实现,该程序主要由我们的研究小组开发,通过评估电子对密度函数的信息含量来阐明分子系统中的电子定域。KLD采用两个基于信息的函数作为同自旋电子的费米和库仑空穴的实空间度量,并且与其他方法(即扩展拉格朗日电子密度)相比具有更好的分辨率。本文还包含了关于代码加速的信息,其中计算时间的减少和不同版本之间的误差计算很明显。
KLD的设计便于使用、扩展和维护;因此,采用了许多现代软件开发、广泛测试和包管理的原则。KLD程序的最新版本是利用计算统一设备架构(CUDA)版本创建的,这使其能够使用NVIDIA图形处理单元(GPU)的计算能力进行处理。电子对条件密度是根据在HF/6 - 31G(2df,p)水平获得的正则分子轨道计算得出的,或者在MP2/6 - 31G(2df,p)//HF/6 - 31G(2df,p)水平计算显式相关波函数时根据自然轨道计算得出。