Suppr超能文献

KGRLFF:基于知识图谱表示学习和特征融合检测药物-药物相互作用

KGRLFF: Detecting Drug-Drug Interactions Based on Knowledge Graph Representation Learning and Feature Fusion.

作者信息

Lin Xiaoli, Yin Zhuang, Zhang Xiaolong, Hu Jing

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2024 Nov-Dec;21(6):2035-2049. doi: 10.1109/TCBB.2024.3434992. Epub 2024 Dec 10.

Abstract

Accurate prediction of drug-drug interactions (DDIs) plays an important role in improving the efficiency of drug development and ensuring the safety of combination therapy. Most existing models rely on a single source of information to predict DDIs, and few models can perform tasks on biomedical knowledge graphs. This paper proposes a new hybrid method, namely Knowledge Graph Representation Learning and Feature Fusion (KGRLFF), to fully exploit the information from the biomedical knowledge graph and molecular structure of drugs to better predict DDIs. KGRLFF first uses a Bidirectional Random Walk sampling method based on the PageRank algorithm (BRWP) to obtain higher-order neighborhood information of drugs in the knowledge graph, including neighboring nodes, semantic relations, and higher-order information associated with triple facts. Then, an embedded representation learning model named Knowledge Graph-based Cyclic Recursive Aggregation (KGCRA) is used to learn the embedded representations of drugs by recursively propagating and aggregating messages with drugs as both the source and destination. In addition, the model learns the molecular structures of the drugs to obtain the structured features. Finally, a Feature Representation Fusion Strategy (FRFS) was developed to integrate embedded representations and structured feature representations. Experimental results showed that KGRLFF is feasible for predicting potential DDIs.

摘要

准确预测药物相互作用(DDIs)对于提高药物研发效率和确保联合治疗的安全性起着重要作用。大多数现有模型依赖单一信息源来预测药物相互作用,很少有模型能够在生物医学知识图谱上执行任务。本文提出了一种新的混合方法,即知识图谱表示学习与特征融合(KGRLFF),以充分利用生物医学知识图谱和药物分子结构中的信息,从而更好地预测药物相互作用。KGRLFF首先使用基于PageRank算法的双向随机游走采样方法(BRWP)来获取知识图谱中药物的高阶邻域信息,包括相邻节点、语义关系以及与三元组事实相关的高阶信息。然后,使用一种名为基于知识图谱的循环递归聚合(KGCRA)的嵌入式表示学习模型,通过以药物作为源和目标递归地传播和聚合消息来学习药物的嵌入式表示。此外,该模型学习药物的分子结构以获得结构化特征。最后,开发了一种特征表示融合策略(FRFS)来整合嵌入式表示和结构化特征表示。实验结果表明,KGRLFF在预测潜在药物相互作用方面是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验