Suppr超能文献

基于行为强化的尖峰预测模型的神经流形约束。

Neural Manifold Constraint for Spike Prediction Models Under Behavioral Reinforcement.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2024;32:2772-2781. doi: 10.1109/TNSRE.2024.3435568. Epub 2024 Aug 5.

Abstract

Spike prediction models effectively predict downstream spike trains from upstream neural activity for neural prostheses. Such prostheses could potentially restore damaged neural communication pathways using predicted patterns to guide electrical stimulations on downstream. Since the ground truth of downstream neural activity is unavailable for subjects with the damage, reinforcement learning (RL) with behavior-level rewards becomes necessary for model training. However, existing models do not involve any constraint on the generated firing patterns and neglect the correlations among neural activities. Thus, the model outputs can greatly deviate from the natural range of neural activities, causing concerns for clinical usage. This study proposes the neural manifold constraint to solve this problem, shaping RL-generated spike trains in the feature space. The constraint terms describe the first and second order statistics of the neural manifold estimated from neural recordings during subjects' freely moving period. Then, the models can be optimized within the neural manifold by behavioral reinforcement. We test the method to predict primary motor cortex (M1) spikes from medial prefrontal (mPFC) spikes when rats perform the two-lever discrimination task. Results show that the neural activity generated by constrained models resembles the real M1 recordings. Compared with models without constraints, our approach achieves similar behavioral success rates, but reduces the mean squared error of neural firing by 61%. The constraints also increase the model's robustness across data segments and induce realistic neural correlations. Our method provides a promising tool to restore transregional communication with high behavioral performance and more realistic microscopic patterns.

摘要

尖峰预测模型可以有效地根据上游神经活动预测下游的尖峰活动,从而为神经假肢提供支持。这类假肢可以通过预测模式来引导下游的电刺激,从而潜在地恢复受损的神经通信通路。由于受损受试者的下游神经活动的真实情况无法获取,因此强化学习(RL)需要使用行为层面的奖励来进行模型训练。然而,现有的模型并没有对生成的放电模式进行任何限制,也忽略了神经活动之间的相关性。因此,模型输出可能会与神经活动的自然范围产生较大偏差,这引起了人们对临床应用的担忧。本研究提出了神经流形约束来解决这个问题,即在特征空间中对 RL 生成的尖峰活动进行约束。约束项描述了从受试者自由活动期间的神经记录中估计的神经流形的一阶和二阶统计量。然后,模型可以在行为强化的作用下在神经流形中进行优化。我们通过大鼠执行双杠杆辨别任务时从内侧前额叶(mPFC)尖峰预测初级运动皮层(M1)尖峰的实验来检验该方法。结果表明,受约束模型产生的神经活动与真实的 M1 记录相似。与没有约束的模型相比,我们的方法实现了相似的行为成功率,但将神经放电的均方误差降低了 61%。约束还增加了模型在数据段之间的鲁棒性,并诱导了现实的神经相关性。我们的方法为恢复跨区域通信提供了一种有前景的工具,具有较高的行为性能和更真实的微观模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验