Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.
Plant Signal Behav. 2024 Dec 31;19(1):2384243. doi: 10.1080/15592324.2024.2384243. Epub 2024 Jul 29.
The process of silique dehiscence is essential for the proper dispersal of seeds at the end of a dehiscent fruit plants lifecycle. Current research focuses on genetic manipulation to mitigate this process and enhance shatter tolerance in crop plants, which has significant economic implications. In this study, we have conducted a time-course analysis of cell patterning and development in valve tissues of and closely related Triangle of U species (, , and ) from Brassicaceae. The goal was to decipher the detailed temporal developmental patterns of the endocarp and cell layers of the valve, specifically their degradation and lignification respectively. Additionally, we propose a new classification system for the lignification of the endocarp a cell layer: L1 indicates the cell closest to the replum, with L2 and L3 representing the second and third cells, respectively, each numerical increment indicating lignified cells farther from the replum. Our findings provide a foundational framework absent in current literature, serving as an effective blueprint for future genomic work aimed at modifying valve structures to enhance agronomic traits, such as reducing fiber (lignin) or increasing shatter tolerance.
蒴果开裂过程对于裂果植物生命周期结束时种子的正常传播至关重要。目前的研究重点是通过遗传操作来减轻这个过程,并提高作物的抗碎能力,这具有重要的经济意义。在这项研究中,我们对十字花科的 和近缘三角属物种( 、 、和 )的瓣片组织中的细胞模式和发育进行了时程分析。目的是解析内果皮 和瓣片细胞层的详细时空发育模式,特别是它们的降解和木质化过程。此外,我们提出了内果皮 a 细胞层木质化的新分类系统:L1 表示最接近中肋的细胞,L2 和 L3 分别代表第二和第三细胞,每个数值递增表示远离中肋的木质化细胞。我们的研究结果提供了一个当前文献中缺失的基础框架,为未来旨在通过改变瓣片结构来提高农艺性状的基因组工作提供了一个有效的蓝图,例如减少纤维(木质素)或提高抗碎能力。