Suppr超能文献

开发一种深度学习模型,用于在非梗阻性无精子症的精子回收过程中检测阳性管。

Development of a deep-learning model for detecting positive tubules during sperm recovery for nonobstructive azoospermia.

机构信息

Department of Urology, Reproduction Center, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan.

出版信息

Reproduction. 2024 Aug 27;168(4). doi: 10.1530/REP-24-0181. Print 2024 Oct 1.

Abstract

To enhance surgical testicular sperm retrieval outcome for men with nonobstructive azoospermia, a deep-learning model was developed to identify positive seminiferous tubules by labeling 110 images with sperm-containing tubules sampled during microdissection testicular sperm extraction as training and validation data. After training, the model achieved an average precision of 0.60.

摘要

为了提高非梗阻性无精子症患者的手术睾丸精子获取效果,开发了一种深度学习模型,通过对微切割睾丸精子提取过程中采集的含有精子的小管进行标记,用 110 张图像对其进行训练和验证,以此来识别生精小管。经过训练,该模型的平均准确率为 0.60。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验