Khodaverdian Varandt, Sano Tokio, Maggs Lara R, Tomarchio Gina, Dias Ana, Tran Mai, Clairmont Connor, McVey Mitch
Department of Biology, Tufts University, Medford, Massachusetts, United States of America.
PLoS Genet. 2024 Jul 29;20(7):e1011181. doi: 10.1371/journal.pgen.1011181. eCollection 2024 Jul.
When replication forks encounter damaged DNA, cells utilize damage tolerance mechanisms to allow replication to proceed. These include translesion synthesis at the fork, postreplication gap filling, and template switching via fork reversal or homologous recombination. The extent to which these different damage tolerance mechanisms are utilized depends on cell, tissue, and developmental context-specific cues, the last two of which are poorly understood. To address this gap, we have investigated damage tolerance responses in Drosophila melanogaster. We report that tolerance of DNA alkylation damage in rapidly dividing larval tissues depends heavily on translesion synthesis. Furthermore, we show that the REV1 protein plays a multi-faceted role in damage tolerance in Drosophila. Larvae lacking REV1 are hypersensitive to methyl methanesulfonate (MMS) and have highly elevated levels of γ-H2Av (Drosophila γ-H2AX) foci and chromosome aberrations in MMS-treated tissues. Loss of the REV1 C-terminal domain (CTD), which recruits multiple translesion polymerases to damage sites, sensitizes flies to MMS. In the absence of the REV1 CTD, DNA polymerases eta and zeta become critical for MMS tolerance. In addition, flies lacking REV3, the catalytic subunit of polymerase zeta, require the deoxycytidyl transferase activity of REV1 to tolerate MMS. Together, our results demonstrate that Drosophila prioritize the use of multiple translesion polymerases to tolerate alkylation damage and highlight the critical role of REV1 in the coordination of this response to prevent genome instability.
当复制叉遇到受损DNA时,细胞会利用损伤耐受机制使复制得以继续进行。这些机制包括在复制叉处进行跨损伤合成、复制后填补缺口,以及通过复制叉逆转或同源重组进行模板切换。这些不同的损伤耐受机制的利用程度取决于细胞、组织以及发育背景特异性线索,其中后两者目前了解甚少。为了填补这一空白,我们研究了黑腹果蝇中的损伤耐受反应。我们报告称,快速分裂的幼虫组织中对DNA烷基化损伤的耐受性很大程度上依赖于跨损伤合成。此外,我们表明REV1蛋白在果蝇的损伤耐受中发挥多方面作用。缺乏REV1的幼虫对甲磺酸甲酯(MMS)高度敏感,并且在经MMS处理的组织中γ-H2Av(果蝇γ-H2AX)焦点水平和染色体畸变大幅升高。REV1 C末端结构域(CTD)的缺失会使果蝇对MMS敏感,该结构域可将多种跨损伤聚合酶招募至损伤位点。在缺乏REV1 CTD的情况下,DNA聚合酶η和ζ对于MMS耐受性变得至关重要。此外,缺乏聚合酶ζ的催化亚基REV3的果蝇需要REV1的脱氧胞苷转移酶活性来耐受MMS。总之,我们的结果表明果蝇优先利用多种跨损伤聚合酶来耐受烷基化损伤,并突出了REV1在协调这种反应以防止基因组不稳定方面的关键作用。