Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160.
Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160.
Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25494-25504. doi: 10.1073/pnas.2010484117. Epub 2020 Sep 30.
During DNA replication, replicative DNA polymerases may encounter DNA lesions, which can stall replication forks. One way to prevent replication fork stalling is through the recruitment of specialized translesion synthesis (TLS) polymerases that have evolved to incorporate nucleotides opposite DNA lesions. Rev1 is a specialized TLS polymerase that bypasses abasic sites, as well as minor-groove and exocyclic guanine adducts. Lesion bypass is accomplished using a unique protein-template mechanism in which the templating base is evicted from the DNA helix and the incoming dCTP hydrogen bonds with an arginine side chain of Rev1. To understand the protein-template mechanism at an atomic level, we employed a combination of time-lapse X-ray crystallography, molecular dynamics simulations, and DNA enzymology on the Rev1 protein. We find that Rev1 evicts the templating base from the DNA helix prior to binding the incoming nucleotide. Binding the incoming nucleotide changes the conformation of the DNA substrate to orient it for nucleotidyl transfer, although this is not coupled to large structural changes in Rev1 like those observed with other DNA polymerases. Moreover, we found that following nucleotide incorporation, Rev1 converts the pyrophosphate product to two monophosphates, which drives the reaction in the forward direction and prevents pyrophosphorolysis. Following nucleotide incorporation, the hydrogen bonds between the incorporated nucleotide and the arginine side chain are broken, but the templating base remains extrahelical. These postcatalytic changes prevent potentially mutagenic processive synthesis by Rev1 and facilitate dissociation of the DNA product from the enzyme.
在 DNA 复制过程中,复制 DNA 聚合酶可能会遇到 DNA 损伤,这可能会导致复制叉停滞。防止复制叉停滞的一种方法是招募专门的跨损伤合成(TLS)聚合酶,这些聚合酶已经进化到能够在 DNA 损伤处掺入核苷酸。Rev1 是一种专门的 TLS 聚合酶,它可以绕过碱基缺失、小沟和环外鸟嘌呤加合物。损伤绕过是通过一种独特的蛋白-模板机制来实现的,其中模板碱基从 DNA 双螺旋中逐出,进入的 dCTP 与 Rev1 的精氨酸侧链形成氢键。为了在原子水平上理解蛋白-模板机制,我们结合使用了时程 X 射线晶体学、分子动力学模拟和 DNA 酶学技术,对 Rev1 蛋白进行了研究。我们发现,Rev1 在结合进入的核苷酸之前,就将模板碱基从 DNA 双螺旋中逐出。结合进入的核苷酸会改变 DNA 底物的构象,使其适合进行核苷酸转移,尽管这与其他 DNA 聚合酶观察到的结构变化不同。此外,我们发现,核苷酸掺入后,Rev1 将焦磷酸产物转化为两个单磷酸,这推动反应向正向进行,并防止焦磷酸水解。核苷酸掺入后,结合的核苷酸与精氨酸侧链之间的氢键被打破,但模板碱基仍然处于非螺旋状态。这些催化后变化可以防止 Rev1 进行潜在致突变的连续合成,并有助于 DNA 产物从酶上解离。