Suppr超能文献

基于体素重要性的高效放射治疗计划。

Efficient radiation treatment planning based on voxel importance.

机构信息

Uppsala University, Uppsala, Sweden.

Memorial Sloan-Kettering Cancer Center, New York, United States of America.

出版信息

Phys Med Biol. 2024 Aug 9;69(16). doi: 10.1088/1361-6560/ad68bd.

Abstract

Radiation treatment planning (RTP) involves optimization over a large number of voxels, many of which carry limited information about the clinical problem. We propose an approach to reduce the large optimization problem by only using a representative subset of informative voxels. This way, we drastically improve planning efficiency while maintaining the plan quality.Within an initial probing step, we pre-solve an easier optimization problem involving a simplified objective from which we derive an importance score per voxel. This importance score is then turned into a sampling distribution, which allows us to subsample a small set of informative voxels using importance sampling. By solving a-now reduced-version of the original optimization problem using this subset, we effectively reduce the problem's size and computational demands while accounting for regions where satisfactory dose deliveries are challenging.In contrast to other stochastic (sub-)sampling methods, our technique only requires a single probing and sampling step to define a reduced optimization problem. This problem can be efficiently solved using established solvers without the need of modifying or adapting them. Empirical experiments on open benchmark data highlight substantially reduced optimization times, up to 50 times faster than the original ones, for intensity-modulated radiation therapy, all while upholding plan quality comparable to traditional methods.Our novel approach has the potential to significantly accelerate RTP by addressing its inherent computational challenges. We reduce the treatment planning time by reducing the size of the optimization problem rather than modifying and improving the optimization method. Our efforts are thus complementary to many previous developments.

摘要

放射治疗计划(RTP)涉及到大量体素的优化,其中许多体素携带的关于临床问题的信息有限。我们提出了一种方法,通过仅使用有代表性的信息量较大的体素子集来减少大型优化问题。这样,我们在保持计划质量的同时,极大地提高了规划效率。

在初始探测步骤中,我们预先求解一个更简单的优化问题,该问题涉及简化的目标函数,从中我们为每个体素得出一个重要性得分。然后,这个重要性得分被转化为一个采样分布,这使得我们可以使用重要性采样来对一小部分信息量较大的体素进行采样。通过使用这个子集来求解原始优化问题的-现在缩小版本,我们有效地减少了问题的规模和计算需求,同时考虑了剂量输送有挑战的区域。

与其他随机(子)采样方法不同,我们的技术只需要一次探测和采样步骤就可以定义一个简化的优化问题。可以使用现有的求解器有效地解决这个问题,而不需要修改或调整它们。在开放的基准数据上的实验结果表明,对于调强放射治疗,优化时间大大减少,最快可达原始时间的 50 倍,同时保持与传统方法相当的计划质量。

我们的新方法有可能通过解决其固有的计算挑战来显著加速 RTP。我们通过减少优化问题的规模来减少治疗计划时间,而不是修改和改进优化方法。因此,我们的努力与许多以前的发展是互补的。

相似文献

3
Accelerating IMRT optimization by voxel sampling.通过体素采样加速调强放射治疗优化
Phys Med Biol. 2007 Dec 21;52(24):7211-28. doi: 10.1088/0031-9155/52/24/002. Epub 2007 Nov 23.

本文引用的文献

2
Array programming with NumPy.使用 NumPy 进行数组编程。
Nature. 2020 Sep;585(7825):357-362. doi: 10.1038/s41586-020-2649-2. Epub 2020 Sep 16.
8
Accelerating IMRT optimization by voxel sampling.通过体素采样加速调强放射治疗优化
Phys Med Biol. 2007 Dec 21;52(24):7211-28. doi: 10.1088/0031-9155/52/24/002. Epub 2007 Nov 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验