Traore Diata, Toulouse Julien, Giner Emmanuel
Laboratoire de Chimie Théorique, Sorbonne Université and CNRS, UMR 7616, F-75005 Paris, France.
Institut Universitaire de France, F-75005 Paris, France.
Faraday Discuss. 2024 Nov 6;254(0):315-331. doi: 10.1039/d4fd00033a.
We present the first application to real molecular systems of the recently proposed linear-response theory for the density-based basis-set correction method [, , 234107 (2023)]. We apply this approach to accelerate the basis-set convergence of excitation energies in the equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) method. We use an approximate linear-response framework that neglects the second-order derivative of the basis-set correction density functional and consists in simply adding to the usual Hamiltonian the one-electron potential generated by the first-order derivative of the functional. This additional basis-set correction potential is evaluated at the Hartree-Fock density, leading to a very computationally cheap basis-set correction. We tested this approach over a set of about 30 excitation energies computed for five small molecular systems and found that the excitation energies from the ground state to Rydberg states are the main source of basis-set error. These excitation energies systematically increase when the size of the basis set is increased, suggesting a biased description in favour of the excited state. Despite the simplicity of the present approach, the results obtained with the basis-set-corrected EOM-CCSD method are encouraging as they yield a mean absolute deviation of 0.02 eV for the aug-cc-pVTZ basis set, while it is 0.04 eV using the standard EOM-CCSD method. This might open the path to an alternative to explicitly correlated approaches to accelerate the basis-set convergence of excitation energies.
我们展示了最近提出的基于密度的基组校正方法的线性响应理论[,,234107 (2023)]在实际分子系统中的首次应用。我们应用这种方法来加速运动方程耦合簇单双激发(EOM-CCSD)方法中激发能的基组收敛。我们使用了一个近似线性响应框架,该框架忽略了基组校正密度泛函的二阶导数,仅在于将由泛函一阶导数产生的单电子势加到通常的哈密顿量上。这个额外的基组校正势在哈特里-福克密度下进行评估,从而得到一种计算成本非常低的基组校正。我们在为五个小分子系统计算的约30个激发能的集合上测试了这种方法,发现从基态到里德堡态的激发能是基组误差的主要来源。当基组大小增加时,这些激发能会系统性地增加,这表明对激发态存在偏向性描述。尽管本方法很简单,但使用经基组校正的EOM-CCSD方法得到的结果令人鼓舞,因为对于aug-cc-pVTZ基组,其平均绝对偏差为0.02 eV,而使用标准EOM-CCSD方法时为0.04 eV。这可能为加速激发能基组收敛的显式相关方法开辟一条替代途径。