Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.
Ecology. 2024 Sep;105(9):e4388. doi: 10.1002/ecy.4388. Epub 2024 Jul 30.
Contemporary symbioses in extreme environments can give an insight into mechanisms that stabilize species interactions during environmental change. The intertidal sea anemone, Anthopleura elegantissima, engages in a nutritional symbiosis with microalgae similar to tropical coral, but withstands more intense environmental fluctuations during tidal inundations. In this study, we compare baseline symbiotic traits and their sensitivity to thermal stress within and among anemone aggregations across the intertidal using a laboratory-based tank experiment to better understand how fixed genotypic and plastic environmental effects contribute to the successful maintenance of this symbiosis in extreme habitats. High intertidal anemones had lower baseline symbiont-to-host cell ratios under control conditions, but their symbionts had higher baseline photosynthetic efficiency compared to low intertidal anemone symbionts. Symbiont communities were identical across all samples, suggesting that shifts in symbiont density and photosynthetic performance could be an acclimatory mechanism to maintain symbiosis in different environments. Despite lower baseline symbiont-to-host cell ratios, high intertidal anemones maintained greater symbiont-to-host cell ratios under heat stress compared with low intertidal anemones, suggesting greater thermal tolerance of high intertidal holobionts. However, the thermal tolerance of clonal anemones acclimatized to different zones was not explained by tidal height alone, indicating additional environmental variables contribute to physiological differences. Host genotype significantly influenced anemone weight, but only explained a minor proportion of variation among symbiotic traits and their response to thermal stress, further implicating environmental history as the primary driver of holobiont tolerance. These results indicate that this symbiosis is highly plastic and may be able to acclimatize to climate change over ecological timescales, defying the convention that symbiotic organisms are more susceptible to environmental stress.
极端环境下的共生关系可以帮助我们深入了解物种在环境变化过程中稳定相互作用的机制。潮间带海葵 Anthopleura elegantissima 与类似热带珊瑚的微藻进行营养共生,但在潮水淹没期间能承受更强烈的环境波动。在这项研究中,我们使用基于实验室的水箱实验比较了潮间带不同高度的海葵群体内和群体间共生特征的基线及其对热胁迫的敏感性,以更好地理解固定的基因型和环境的可塑性如何有助于这种共生关系在极端生境中的成功维持。在对照条件下,高潮间带海葵的共生体与宿主细胞的比例较低,但与低潮间带海葵的共生体相比,其共生体的基础光合效率更高。所有样本的共生体群落都是相同的,这表明共生体密度和光合性能的变化可能是一种适应机制,可维持不同环境中的共生关系。尽管高潮间带海葵的共生体与宿主细胞的比例较低,但与低潮间带海葵相比,它们在热胁迫下仍能维持更高的共生体与宿主细胞的比例,这表明高潮间带海葵的共生体对热的耐受性更强。然而,潮间带不同高度的克隆海葵的热耐受性不能仅用潮汐高度来解释,这表明其他环境变量也会导致生理差异。宿主基因型显著影响海葵的体重,但仅能解释共生特征及其对热胁迫响应的变异的一小部分,这进一步表明环境历史是影响共生体耐受性的主要因素。这些结果表明,这种共生关系具有高度的可塑性,可能能够在生态时间尺度上适应气候变化,这与共生生物对环境胁迫更敏感的传统观点相悖。