文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

小鼠中的肉碱O-辛酰基转移酶(CROT)缺乏会导致ω-3脂肪酸增加。

Carnitine O-octanoyltransferase (CROT) deficiency in mice leads to an increase of omega-3 fatty acids.

作者信息

Okui Takehito, Kuraoka Shiori, Iwashita Masaya, Itagawa Rei, Kasai Taku, Aikawa Masanori, Singh Sasha A, Aikawa Elena

机构信息

Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.

Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.

出版信息

Front Mol Biosci. 2024 Jul 15;11:1374316. doi: 10.3389/fmolb.2024.1374316. eCollection 2024.


DOI:10.3389/fmolb.2024.1374316
PMID:39076376
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11284101/
Abstract

Carnitine O-octanoyltransferase (CROT) is a well-established peroxisomal enzyme involved in liver fatty acid oxidation, but less is known about its recently discovered role in promoting vascular calcification, and whether CROT-dependent liver metabolism contributes to the latter. To date, CROT function in the context of calcification potential has been conducted in the dyslipidemic low-density lipoprotein receptor-deficient () mice. To differentiate peroxisome and CROT-dependent lipid biology from that of lipoprotein-mediated lipid biology, we therefore conducted a metabolomic analysis of the liver and plasma of normolipidemic CROT-deficient () mice. We performed LC-MS-based metabolomics on liver and plasma derived from and +/- mice and sibling mice, using a dual-phase metabolite extraction protocol, and multiple LC-MS acquisition strategies. We identified between 79 to 453 annotated metabolites from annotated metabolites from liver samples, and 117 to 424 annotated metabolites from plasma samples. Through differential abundance analysis, we determined that omega-3 fatty acids such as EPA, DPA, and DHA were higher in the liver of and +/- mice than mice. EPA were higher in plasma of mice than mice. We also determined that the anti-inflammatory dicarboxylic acids, tetradecanedioic acid and azelaic acid, were higher in the plasma of CROT-deficient mice. Our study associated genetic CROT deletion with increased levels of anti-inflammatory molecules in mouse liver and plasma. These results suggest a potential mechanism for anti-calcification effects of CROT suppression and the potential use of omega-3 fatty acids as biomarkers for future CROT inhibition therapies.

摘要

肉碱O - 辛酰基转移酶(CROT)是一种公认的参与肝脏脂肪酸氧化的过氧化物酶体酶,但对于其最近发现的促进血管钙化的作用以及CROT依赖性肝脏代谢是否促成后者,人们了解较少。迄今为止,在血脂异常的低密度脂蛋白受体缺陷()小鼠中研究了CROT在钙化潜能方面的功能。为了区分过氧化物酶体和CROT依赖性脂质生物学与脂蛋白介导的脂质生物学,我们对血脂正常的CROT缺陷()小鼠的肝脏和血浆进行了代谢组学分析。我们使用双相代谢物提取方案和多种液相色谱 - 质谱采集策略,对来自和+/-小鼠以及同窝小鼠的肝脏和血浆进行了基于液相色谱 - 质谱的代谢组学分析。我们从肝脏样本的注释代谢物中鉴定出79至453种注释代谢物,从血浆样本中鉴定出117至424种注释代谢物。通过差异丰度分析,我们确定,和+/-小鼠肝脏中的ω-3脂肪酸,如二十碳五烯酸(EPA)、二十二碳五烯酸(DPA)和二十二碳六烯酸(DHA),比小鼠中的含量更高。小鼠血浆中的EPA含量比小鼠中的更高。我们还确定,抗炎性二羧酸,十四烷二酸和壬二酸,在CROT缺陷小鼠的血浆中含量更高。我们的研究将基因CROT缺失与小鼠肝脏和血浆中抗炎分子水平的升高联系起来。这些结果表明了CROT抑制的抗钙化作用的潜在机制,以及ω-3脂肪酸作为未来CROT抑制疗法生物标志物的潜在用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be71/11284101/030ce20dc98a/fmolb-11-1374316-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be71/11284101/8d8faec88fd7/fmolb-11-1374316-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be71/11284101/ad1edd15a3ff/fmolb-11-1374316-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be71/11284101/a83c7f74f4f2/fmolb-11-1374316-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be71/11284101/6e5bd4b5e0b5/fmolb-11-1374316-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be71/11284101/030ce20dc98a/fmolb-11-1374316-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be71/11284101/8d8faec88fd7/fmolb-11-1374316-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be71/11284101/ad1edd15a3ff/fmolb-11-1374316-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be71/11284101/a83c7f74f4f2/fmolb-11-1374316-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be71/11284101/6e5bd4b5e0b5/fmolb-11-1374316-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be71/11284101/030ce20dc98a/fmolb-11-1374316-g005.jpg

相似文献

[1]
Carnitine O-octanoyltransferase (CROT) deficiency in mice leads to an increase of omega-3 fatty acids.

Front Mol Biosci. 2024-7-15

[2]
CROT (Carnitine O-Octanoyltransferase) Is a Novel Contributing Factor in Vascular Calcification via Promoting Fatty Acid Metabolism and Mitochondrial Dysfunction.

Arterioscler Thromb Vasc Biol. 2021-2

[3]
Carnitine o-octanoyltransferase is a p53 target that promotes oxidative metabolism and cell survival following nutrient starvation.

J Biol Chem. 2023-7

[4]
Changes in carnitine octanoyltransferase activity induce alteration in fatty acid metabolism.

Biochem Biophys Res Commun. 2011-5-17

[5]
Computational Screening Strategy for Drug Repurposing Identified Niclosamide as Inhibitor of Vascular Calcification.

Front Cardiovasc Med. 2022-1-20

[6]
The Regulators of Peroxisomal Acyl-Carnitine Shuttle CROT and CRAT Promote Metastasis in Melanoma.

J Invest Dermatol. 2023-2

[7]
Engineering the Saccharomyces cerevisiae β-oxidation pathway to increase medium chain fatty acid production as potential biofuel.

PLoS One. 2014-1-21

[8]
Peroxisomes contribute to the acylcarnitine production when the carnitine shuttle is deficient.

Biochim Biophys Acta. 2013-9

[9]
A phytol-enriched diet induces changes in fatty acid metabolism in mice both via PPARalpha-dependent and -independent pathways.

J Lipid Res. 2005-4

[10]
The relationship between cognitive impairment and fatty acids and carnitine in hemodialysis patients.

Nefrologia (Engl Ed). 2024

引用本文的文献

[1]
Differential Expression of Lipid Metabolism Genes, CROT and ABCG1, in Obese Patients with Comorbid Depressive Disorder and Risk of MASLD.

Metabolites. 2025-6-11

本文引用的文献

[1]
Role of Omega-3 Fatty Acids in Cardiovascular Disease: the Debate Continues.

Curr Atheroscler Rep. 2023-1

[2]
Mechanistic Insights from REDUCE-IT STRENGTHen the Case Against Triglyceride Lowering as a Strategy for Cardiovascular Disease Risk Reduction.

Am J Med. 2021-9

[3]
Calcific Aortic Valve Disease "Omics" Is Timely, But Are We Looking Too Late?

JACC Basic Transl Sci. 2020-12-28

[4]
CROT (Carnitine O-Octanoyltransferase) Is a Novel Contributing Factor in Vascular Calcification via Promoting Fatty Acid Metabolism and Mitochondrial Dysfunction.

Arterioscler Thromb Vasc Biol. 2021-2

[5]
Effects of Omega-3 Fatty Acids on Major Adverse Cardiovascular Events: What Matters Most: the Drug, the Dose, or the Placebo?

JAMA. 2020-12-8

[6]
Skyline for Small Molecules: A Unifying Software Package for Quantitative Metabolomics.

J Proteome Res. 2020-4-3

[7]
Metabolomic Analysis of Liver Tissues for Characterization of Hepatocellular Carcinoma.

J Proteome Res. 2019-7-1

[8]
Sex differences in lipid and lipoprotein metabolism.

Mol Metab. 2018-5-16

[9]
Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry.

Annu Rev Biochem. 2014-3-3

[10]
Changes in carnitine octanoyltransferase activity induce alteration in fatty acid metabolism.

Biochem Biophys Res Commun. 2011-5-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索