Suppr超能文献

一种关于引文传播的记忆理论解释。

A memory-theoretic account of citation propagation.

作者信息

Dougherty Michael R, Illingworth David A, Nguyen Rosalind

机构信息

Department of Psychology, University of Maryland, College Park, MD, USA.

Department of Psychology, California State University, Long Beach, CA, USA.

出版信息

R Soc Open Sci. 2024 May 29;11(5):231521. doi: 10.1098/rsos.231521. eCollection 2024 May.

Abstract

Despite the common assumption that citations are indicative of an article's scientific merit, increasing evidence indicates that citation counts are largely driven by variables unrelated to quality. In this article, we treat people's decisions of what to cite as an instance of memory retrieval and show that observed citation patterns are well accounted for by a model of memory. The proposed exposure model anticipates that small alterations in factors that affect people's ability to retrieve to-be-cited articles from memory early in their life cycle are magnified over time and can lead to the emergence of highly cited papers. This effect occurs even when there is no variation in the starting point exposure probabilities (i.e. when assuming a level playing field where all articles are treated equally and of equal 'quality'), and is exacerbated by natural variation in retrievability of articles due to encoding. We discuss the implications of the model within the context of research evaluation and hiring, tenure and promotion decisions.

摘要

尽管人们普遍认为引用能够表明一篇文章的科学价值,但越来越多的证据表明,引用次数在很大程度上是由与质量无关的变量驱动的。在本文中,我们将人们关于引用内容的决策视为记忆检索的一个实例,并表明观察到的引用模式可以通过一个记忆模型得到很好的解释。所提出的曝光模型预测,在影响人们在文章生命周期早期从记忆中检索待引用文章能力的因素上的微小变化会随着时间的推移而放大,并可能导致高被引论文的出现。即使在起始点曝光概率没有变化的情况下(即假设所有文章都被平等对待且具有同等“质量”的公平竞争环境),这种效应也会发生,并且由于编码导致的文章可检索性的自然变化而加剧。我们在研究评估以及招聘、终身教职和晋升决策的背景下讨论该模型的意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28ac/11286183/db60f41e9604/rsos.231521.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验