Xu Jun, Qin Gang
First School of Clinical Medicine, Shanxi Medical University, 030000 Taiyuan, Shanxi, China.
Department of Cardiology, First Hospital of Shanxi Medical University, 030000 Taiyuan, Shanxi, China.
Rev Cardiovasc Med. 2024 Feb 28;25(3):77. doi: 10.31083/j.rcm2503077. eCollection 2024 Mar.
Research on post-infarction insomnia, particularly short sleep duration following myocardial infarction (MI), remains limited. Currently, there are no existing guidelines or risk prediction models to assist physicians in managing or preventing short sleep duration or insomnia following MI. This study aims to develop a nomogram for predicting the risk of short sleep duration after MI.
We conducted a retrospective study on 1434 MI survivors aged 20 and above, utilizing data from the National Health and Nutrition Examination Survey (NHANES) database spanning from 2007 to 2018. Among them, 710 patients were assigned to the training group, while 707 patients were allocated to the testing group. We utilized logistic regression, least absolute shrinkage and selection operator (LASSO) regression, and the elastic network for variable selection. The stability and accuracy of the prediction model were assessed using receiver operator characteristics (ROCs) and calibration curves.
We included five variables in the nomogram: age, poverty income ratio (PIR), body mass index (BMI), race, and depression. The ROC curves yielded values of 0.636 for the training group and 0.657 for the testing group, demonstrating the model's good prediction accuracy and robustness through a calibration curve test.
Our nomogram can effectively predict the likelihood of short sleep duration in MI survivors, providing valuable support for clinicians in preventing and managing post-MI short sleep duration.
关于心肌梗死后失眠的研究,尤其是心肌梗死(MI)后睡眠时间短的研究仍然有限。目前,尚无现有指南或风险预测模型来协助医生管理或预防心肌梗死后的短睡眠时间或失眠。本研究旨在开发一种列线图,用于预测心肌梗死后短睡眠时间的风险。
我们对1434名年龄在20岁及以上的心肌梗死幸存者进行了一项回顾性研究,利用了2007年至2018年国家健康与营养检查调查(NHANES)数据库中的数据。其中,710名患者被分配到训练组,707名患者被分配到测试组。我们使用逻辑回归、最小绝对收缩和选择算子(LASSO)回归以及弹性网络进行变量选择。使用受试者工作特征(ROC)曲线和校准曲线评估预测模型的稳定性和准确性。
我们在列线图中纳入了五个变量:年龄、贫困收入比(PIR)、体重指数(BMI)、种族和抑郁。训练组的ROC曲线值为0.636,测试组为0.657,通过校准曲线测试证明了该模型具有良好的预测准确性和稳健性。
我们的列线图可以有效预测心肌梗死幸存者短睡眠时间的可能性,为临床医生预防和管理心肌梗死后短睡眠时间提供有价值的支持。