Suppr超能文献

一种用于主动脉手术后急性肾损伤的新型预测模型。

A Novel Predictive Model for Acute Kidney Injury Following Surgery of the Aorta.

作者信息

Chen Mingjian, Zhao Sheng, Chen Pengfei, Zhao Diming, Wang Liqing, Chen Zhaoyang

机构信息

Department of Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100037 Beijing, China.

Department of Cardiology, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 100037 Beijing, China.

出版信息

Rev Cardiovasc Med. 2024 Feb 4;25(2):54. doi: 10.31083/j.rcm2502054. eCollection 2024 Feb.

Abstract

BACKGROUND

Acute kidney injury (AKI) frequently occurs after aortic surgery and has a significant impact on patient outcomes. Early detection or prediction of AKI is crucial for timely interventions. This study aims to develop and validate a novel model for predicting AKI following aortic surgery.

METHODS

We enrolled 156 patients who underwent on-pump aortic surgery in our hospital from February 2023 to April 2023. Postoperative levels of eight cytokines related to macrophage polarization analyzed using a multiplex cytokine assay. All-subset regression was used to select the optimal cytokines to predict AKI. A logistic regression model incorporating the selected cytokines was used for internal validation in combination with a bootstrapping technique. The model's ability to discriminate between cases of AKI and non-AKI was assessed using receiver operating characteristic (ROC) curve analysis.

RESULTS

Of the 156 patients, 109 (69.87%) developed postoperative AKI. Interferon-gamma (IFN- ) and interleukin-4 (IL-4) were identified as candidate AKI predictors. The cytokine-based model including IFN- and IL-4 demonstrated excellent discrimination (C-statistic: 0.90) and good calibration (Brier score: 0.11). A clinical nomogram was generated, and decision curve analysis revealed that the cytokine-based model outperformed the clinical factor-based model in terms of net benefit. Moreover, both IFN- and IL-4 emerged as independent risk factors for AKI. Patients in the second and third tertiles of IFN- and IL-4 concentrations had a significantly higher risk of severe AKI, a higher likelihood of requiring renal replacement therapy, or experiencing in-hospital death. These patients also had extended durations of mechanical ventilation and intensive care unit stays, compared with those in the first tertile (all for group trend 0.001).

CONCLUSIONS

We successfully established a novel and powerful predictive model for AKI, and demonstrating the significance of IFN- and IL-4 as valuable clinical markers. These cytokines not only predict the risk of AKI following aortic surgery but are also linked to adverse in-hospital outcomes. This model offers a promising avenue for the early identification of high-risk patients, potentially improving clinical decision-making and patient care.

摘要

背景

急性肾损伤(AKI)常在主动脉手术后发生,对患者预后有重大影响。早期检测或预测AKI对于及时干预至关重要。本研究旨在开发并验证一种用于预测主动脉手术后AKI的新型模型。

方法

我们纳入了2023年2月至2023年4月在我院接受体外循环主动脉手术的156例患者。使用多重细胞因子检测法分析术后与巨噬细胞极化相关的8种细胞因子水平。采用全子集回归法选择预测AKI的最佳细胞因子。结合自抽样技术,将纳入所选细胞因子的逻辑回归模型用于内部验证。使用受试者工作特征(ROC)曲线分析评估该模型区分AKI病例和非AKI病例的能力。

结果

156例患者中,109例(69.87%)术后发生AKI。干扰素-γ(IFN-γ)和白细胞介素-4(IL-4)被确定为AKI的候选预测因子。包含IFN-γ和IL-4的基于细胞因子的模型显示出优异的区分能力(C统计量:0.90)和良好的校准度(Brier评分:0.11)。生成了临床列线图,决策曲线分析显示基于细胞因子的模型在净效益方面优于基于临床因素的模型。此外,IFN-γ和IL-4均为AKI的独立危险因素。IFN-γ和IL-4浓度处于第二和第三三分位数的患者发生严重AKI的风险显著更高,需要肾脏替代治疗或院内死亡的可能性更大。与第一三分位数的患者相比,这些患者的机械通气时间和重症监护病房住院时间也更长(所有组趋势P均<0.001)。

结论

我们成功建立了一种新型且强大的AKI预测模型,证明了IFN-γ和IL-4作为有价值的临床标志物的重要性。这些细胞因子不仅可预测主动脉手术后AKI的风险,还与不良院内结局相关。该模型为早期识别高危患者提供了一条有前景的途径,可能改善临床决策和患者护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11263166/94bfabe3ad57/2153-8174-25-2-054-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验