Suppr超能文献

基于机器学习的不同类型急性主动脉夹层术后急性肾损伤预测模型

Prediction model of acute kidney injury after different types of acute aortic dissection based on machine learning.

作者信息

Xinsai Li, Zhengye Wang, Xuan Huang, Xueqian Chu, Kai Peng, Sisi Chen, Xuyan Jiang, Suhua Li

机构信息

Kidney Disease Center of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.

Xinjiang Branch of National Clinical Research Center for Kidney Disease, Institute of Nephrology of Xinjiang, Urumqi, China.

出版信息

Front Cardiovasc Med. 2022 Sep 21;9:984772. doi: 10.3389/fcvm.2022.984772. eCollection 2022.

Abstract

OBJECTIVE

A clinical prediction model for postoperative combined Acute kidney injury (AKI) in patients with Type A acute aortic dissection (TAAAD) and Type B acute aortic dissection (TBAAD) was constructed by using Machine Learning (ML).

METHODS

Baseline data was collected from Acute aortic division (AAD) patients admitted to First Affiliated Hospital of Xinjiang Medical University between January 1, 2019 and December 31, 2021. (1) We identified baseline Serum creatinine (SCR) estimation methods and used them as a basis for diagnosis of AKI. (2) Divide their total datasets randomly into Training set (70%) and Test set (30%), Bootstrap modeling and validation of features using multiple ML methods in the training set, and select models corresponding to the largest Area Under Curve (AUC) for follow-up studies. (3) Screening of the best ML model variables through the model visualization tools Shapley Addictive Explanations (SHAP) and Recursive feature reduction (REF). (4) Finally, the pre-screened prediction models were evaluated using test set data from three aspects: discrimination, Calibration, and clinical benefit.

RESULTS

The final incidence of AKI was 69.4% (120/173) in 173 patients with TAAAD and 28.6% (81/283) in 283 patients with TBAAD. For TAAAD-AKI, the Random Forest (RF) model showed the best prediction performance in the training set (AUC = 0.760, 95% CI:0.630-0.881); while for TBAAD-AKI, the Light Gradient Boosting Machine (LightGBM) model worked best (AUC = 0.734, 95% CI:0.623-0.847). Screening of the characteristic variables revealed that the common predictors among the two final prediction models for postoperative AKI due to AAD were baseline SCR, Blood urea nitrogen (BUN) and Uric acid (UA) at admission, Mechanical ventilation time (MVT). The specific predictors in the TAAAD-AKI model are: White blood cell (WBC), Platelet (PLT) and D dimer at admission, Plasma The specific predictors in the TBAAD-AKI model were N-terminal pro B-type natriuretic peptide (BNP), Serum kalium, Activated partial thromboplastin time (APTT) and Systolic blood pressure (SBP) at admission, Combined renal arteriography in surgery. Finally, we used in terms of Discrimination, the ROC value of the RF model for TAAAD was 0.81 and the ROC value of the LightGBM model for TBAAD was 0.74, both with good accuracy. In terms of calibration, the calibration curve of TAAAD-AKI's RF fits the ideal curve the best and has the lowest and smallest Brier score (0.16). Similarly, the calibration curve of TBAAD-AKI's LightGBM model fits the ideal curve the best and has the smallest Brier score (0.15). In terms of Clinical benefit, the best ML models for both types of AAD have good Net benefit as shown by Decision Curve Analysis (DCA).

CONCLUSION

We successfully constructed and validated clinical prediction models for the occurrence of AKI after surgery in TAAAD and TBAAD patients using different ML algorithms. The main predictors of the two types of AAD-AKI are somewhat different, and the strategies for early prevention and control of AKI are also different and need more external data for validation.

摘要

目的

运用机器学习(ML)构建A型急性主动脉夹层(TAAAD)和B型急性主动脉夹层(TBAAD)患者术后合并急性肾损伤(AKI)的临床预测模型。

方法

收集2019年1月1日至2021年12月31日在新疆医科大学第一附属医院收治的急性主动脉夹层(AAD)患者的基线数据。(1)确定基线血清肌酐(SCR)估算方法,并将其作为AKI诊断依据。(2)将其全部数据集随机分为训练集(70%)和测试集(30%),在训练集中使用多种ML方法对特征进行自助抽样建模和验证,并选择曲线下面积(AUC)最大的模型进行后续研究。(3)通过模型可视化工具Shapley Addictive Explanations(SHAP)和递归特征消除(REF)筛选最佳ML模型变量。(4)最后,使用测试集数据从区分度、校准度和临床获益三个方面对预筛选的预测模型进行评估。

结果

173例TAAAD患者中AKI最终发生率为69.4%(120/173),283例TBAAD患者中为28.6%(81/283)。对于TAAAD-AKI,随机森林(RF)模型在训练集中表现出最佳预测性能(AUC = 0.760,95%CI:0.630 - 0.881);而对于TBAAD-AKI,轻梯度提升机(LightGBM)模型效果最佳(AUC = 0.734,95%CI:0.623 - 0.847)。特征变量筛选显示,AAD术后AKI的两个最终预测模型的共同预测因素为入院时的基线SCR、血尿素氮(BUN)、尿酸(UA)、机械通气时间(MVT)。TAAAD-AKI模型中的特定预测因素为:入院时的白细胞(WBC)、血小板(PLT)和D-二聚体、血浆。TBAAD-AKI模型中的特定预测因素为:入院时的N末端B型利钠肽原(BNP)、血清钾、活化部分凝血活酶时间(APTT)和收缩压(SBP)、手术中联合肾动脉造影。最后,在区分度方面,TAAAD的RF模型的ROC值为0.81,TBAAD的LightGBM模型的ROC值为0.74,两者准确性均良好。在校准度方面,TAAAD-AKI的RF校准曲线与理想曲线拟合最佳,且Brier评分最低(0.16)。同样,TBAAD-AKI的LightGBM模型校准曲线与理想曲线拟合最佳,且Brier评分最小(0.15)。在临床获益方面,决策曲线分析(DCA)显示两种类型AAD的最佳ML模型均具有良好的净获益。

结论

我们成功构建并验证了使用不同ML算法的TAAAD和TBAAD患者术后AKI发生的临床预测模型。两种类型AAD-AKI的主要预测因素有所不同,AKI的早期防控策略也不同,需要更多外部数据进行验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43d2/9535339/0e31bae7a16c/fcvm-09-984772-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验