Suppr超能文献

通过亚千赫兹外周神经刺激阻断Aδ纤维和C纤维神经传导。

Blocking Aδ- and C-fiber neural transmission by sub-kilohertz peripheral nerve stimulation.

作者信息

Zhang Shaopeng, Chen Longtu, Ladez Sajjad Rigi, Seferge Ahmet, Liu Jia, Feng Bin

机构信息

Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States.

出版信息

Front Neurosci. 2024 Jul 15;18:1404903. doi: 10.3389/fnins.2024.1404903. eCollection 2024.

Abstract

INTRODUCTION

We recently showed that sub-kilohertz electrical stimulation of the afferent somata in the dorsal root ganglia (DRG) reversibly blocks afferent transmission. Here, we further investigated whether similar conduction block can be achieved by stimulating the nerve trunk with electrical peripheral nerve stimulation (ePNS).

METHODS

We explored the mechanisms and parameters of conduction block by ePNS via ex vivo single-fiber recordings from two somatic (sciatic and saphenous) and one autonomic (vagal) nerves harvested from mice. Action potentials were evoked on one end of the nerve and recorded on the other end from teased nerve filaments, i.e., single-fiber recordings. ePNS was delivered in the middle of the nerve trunk using a glass suction electrode at frequencies of 5, 10, 50, 100, 500, and 1000 Hz.

RESULTS

Suprathreshold ePNS reversibly blocks axonal neural transmission of both thinly myelinated Aδ-fiber axons and unmyelinated C-fiber axons. ePNS leads to a progressive decrease in conduction velocity (CV) until transmission blockage, suggesting activity-dependent conduction slowing. The blocking efficiency is dependent on the axonal conduction velocity, with Aδ-fibers efficiently blocked by 50-1000 Hz stimulation and C-fibers blocked by 10-50 Hz. The corresponding NEURON simulation of action potential transmission indicates that the disrupted transmembrane sodium and potassium concentration gradients underly the transmission block by the ePNS.

DISCUSSION

The current study provides direct evidence of reversible Aδ- and C-fiber transmission blockage by low-frequency (<100 Hz) electrical stimulation of the nerve trunk, a previously overlooked mechanism that can be harnessed to enhance the therapeutic effect of ePNS in treating neurological disorders.

摘要

引言

我们最近发现,对背根神经节(DRG)中的传入神经元胞体进行亚千赫兹电刺激可可逆地阻断传入神经传递。在此,我们进一步研究通过外周神经电刺激(ePNS)刺激神经干是否能实现类似的传导阻滞。

方法

我们通过对从小鼠采集的两条躯体神经(坐骨神经和隐神经)和一条自主神经(迷走神经)进行离体单纤维记录,探索了ePNS导致传导阻滞的机制和参数。在神经的一端诱发动作电位,并从另一端的 teased 神经细丝上进行记录,即单纤维记录。使用玻璃吸引电极在神经干中部以5、10、50、100、500和1000Hz的频率施加ePNS。

结果

阈上ePNS可可逆地阻断细有髓Aδ纤维轴突和无髓C纤维轴突的轴突神经传递。ePNS导致传导速度(CV)逐渐降低直至传导阻滞,提示活动依赖性传导减慢。阻断效率取决于轴突传导速度,50 - 1000Hz刺激可有效阻断Aδ纤维,10 - 50Hz刺激可阻断C纤维。动作电位传递的相应NEURON模拟表明,ePNS导致的传导阻滞是由跨膜钠和钾浓度梯度的破坏引起的。

讨论

本研究提供了直接证据,表明通过对神经干进行低频(<100Hz)电刺激可实现Aδ和C纤维的可逆性传导阻滞,这是一种先前被忽视的机制,可用于增强ePNS在治疗神经系统疾病中的治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aba0/11284050/821c22833aab/fnins-18-1404903-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验