Wagner Frank R, Grin Yuri
Max Planck Institute for Chemical Physics of Solids, Chemical Metals Science, Nöthnitzer Straße 40, 01187 Dresden, Germany.
Inorg Chem. 2024 Oct 28;63(43):20205-20216. doi: 10.1021/acs.inorgchem.4c01390. Epub 2024 Jul 30.
In the large class of main-group Zintl phases, the octet rule plays a key role for the polyanions following the pseudoatom concept and the 8- rule, such that a unique correspondence between atomic partial structure and its electron count results. In the conceptual framework of the Wade's type of clusters the relations to the octet rule are less obvious, and its structural implications are not clear. For this purpose, a topological implementation of the octet rule (TORI) within a delocalized bonding scenario is introduced. It is based on the average topology of the deltahedral cluster skeletons and the octet rule applied to delocalized fractional 2- and 3-center bond distributions. For a given skeletal electron pair count SEP, TORI yields values (, ) similar to the approach. Two hierarchically different types of octet-rule fulfillment are identified, the cluster-wise and the local one. The local octet-rule fulfillment always implies the cluster-wise one, while the converse is not true. Deltahedral clusters with different skeletal shapes but the same Wade's SEP count can be distinguished with respect to different octet-rule fulfillment. The TORI approach opens a perspective to compare Zintl phases containing Wade-type clusters with those containing 8- type of partial structures on the basis of octet-rule implications. The main difference to the 8- type of partial structures identified is the more flexible way of octet-rule fulfillment in the Wade's type clusters, which does not prevent them from realizing the same cluster topology with different SEP counts. The TORI approach works with delocalized fractional bonds and is consistent with the concept of PSEPT; it just adds an additional facet.
在一大类主族津特耳相(Zintl phases)中,八隅体规则对于遵循准原子概念和8电子规则的多阴离子起着关键作用,从而使得原子局部结构与其电子数之间产生独特的对应关系。在韦德(Wade)型簇合物的概念框架中,与八隅体规则的关系不太明显,其结构含义也不清晰。为此,引入了一种在离域键合场景下的八隅体规则拓扑实现(TORI)。它基于三角面簇骨架的平均拓扑结构以及应用于离域分数2中心和3中心键分布的八隅体规则。对于给定的骨架电子对数(SEP),TORI得出的值(,)与 方法类似。确定了两种层次不同的八隅体规则满足类型,即簇级和局部级。局部八隅体规则满足总是意味着簇级满足,反之则不然。具有不同骨架形状但相同韦德SEP数的三角面簇可以根据不同的八隅体规则满足情况加以区分。TORI方法为基于八隅体规则含义比较包含韦德型簇的津特耳相与包含8电子型局部结构的津特耳相开辟了一个视角。与所确定的8电子型局部结构的主要区别在于,韦德型簇中八隅体规则满足的方式更为灵活,这并不妨碍它们以不同的SEP数实现相同的簇拓扑结构。TORI方法适用于离域分数键,并且与PSEPT的概念一致;它只是增加了一个额外的方面。