Suppr超能文献

工程菌细胞色素 P450 BM3 对紫苏醇的环氧化作用。

Epoxidation of perillyl alcohol by engineered bacterial cytochrome P450 BM3.

机构信息

School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, the Republic of Korea.

Namhae Garlic Research Institute, 2465-8 Namhaedaero, Namhae, Gyeongsangnam-do 52430, the Republic of Korea.

出版信息

Enzyme Microb Technol. 2024 Oct;180:110487. doi: 10.1016/j.enzmictec.2024.110487. Epub 2024 Jul 29.

Abstract

Perillyl alcohol (POH) is a secondary metabolite of plants. POH and its derivatives are known to be effective as an anticancer treatment. In this study, oxidative derivatives of POH, which are difficult to synthesize chemically, were synthesized using the engineered bacterial cytochrome P450 BM3 (CYP102A1) as a biocatalyst. The activity of wild-type (WT) CYP102A1 and 29 engineered enzymes toward POH was screened using a high-performance liquid chromatography. They produced one major product. Among them, the engineered CYP102A1 M601 mutant with seven mutations (R47L/F81I/F87V/E143G/L150F/L188Q/E267V) showed the highest conversion, 6.4-fold higher than the WT. Structure modeling using AlphFold2 and PyMoL suggests that mutations near the water channel may be responsible for the increased catalytic activity of the M601 mutant. The major product was identified as a POH-8,9-epoxide by gas chromatography-mass spectrometry and nuclear magnetic resonance analysis. The optimal temperature and pH for the product formation were 35 °C and pH 7.4, respectively. The k and K of M601 were 540 min and 2.77 mM, respectively. To improve POH-8,9-epoxide production, substrate concentration and reaction time were optimized. The optimal condition for POH-8,9-epoxide production by M601 was 5.0 mM POH, pH 7.4, 35 ℃, and 6 h reaction, which produced the highest concentration of 1.72 mM. Therefore, the biosynthesis of POH-8,9-epoxide using M601 as a biocatalyst is suggested to be an efficient and sustainable synthetic process that can be applied to chemical and pharmaceutical industries.

摘要

芳樟醇(POH)是植物的次生代谢物。已知 POH 及其衍生物是有效的抗癌治疗药物。在这项研究中,使用工程化的细菌细胞色素 P450 BM3(CYP102A1)作为生物催化剂合成了难以化学合成的 POH 的氧化衍生物。使用高效液相色谱法筛选了野生型(WT)CYP102A1 和 29 种工程酶对 POH 的活性。它们产生了一种主要产物。其中,具有 7 个突变(R47L/F81I/F87V/E143G/L150F/L188Q/E267V)的工程 CYP102A1 M601 突变体显示出最高的转化率,比 WT 高 6.4 倍。使用 AlphFold2 和 PyMoL 进行结构建模表明,靠近水通道的突变可能是 M601 突变体催化活性增加的原因。主要产物通过气相色谱-质谱和核磁共振分析鉴定为 POH-8,9-环氧化物。产物形成的最佳温度和 pH 值分别为 35°C 和 pH 7.4。M601 的 k 和 K 分别为 540 min 和 2.77 mM。为了提高 POH-8,9-环氧化物的产量,优化了底物浓度和反应时间。M601 生产 POH-8,9-环氧化物的最佳条件为 5.0 mM POH、pH 7.4、35°C 和 6 h 反应,可产生最高浓度 1.72 mM。因此,使用 M601 作为生物催化剂生产 POH-8,9-环氧化物被认为是一种高效、可持续的合成工艺,可应用于化学和制药行业。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验