Department of Computer Science, University of Bath, Bath, UK.
Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
Comput Med Imaging Graph. 2024 Sep;116:102420. doi: 10.1016/j.compmedimag.2024.102420. Epub 2024 Jul 19.
Glioblastoma, an aggressive brain tumor prevalent in adults, exhibits heterogeneity in its microstructures and vascular patterns. The delineation of its subregions could facilitate the development of region-targeted therapies. However, current unsupervised learning techniques for this task face challenges in reliability due to fluctuations of clustering algorithms, particularly when processing data from diverse patient cohorts. Furthermore, stable clustering results do not guarantee clinical meaningfulness. To establish the clinical relevance of these subregions, we will perform survival predictions using radiomic features extracted from them. Following this, achieving a balance between outcome stability and clinical relevance presents a significant challenge, further exacerbated by the extensive time required for hyper-parameter tuning. In this study, we introduce a multi-objective Bayesian optimization (MOBO) framework, which leverages a Feature-enhanced Auto-Encoder (FAE) and customized losses to assess both the reproducibility of clustering algorithms and the clinical relevance of their outcomes. Specifically, we embed the entirety of these processes within the MOBO framework, modeling both using distinct Gaussian Processes (GPs). The proposed MOBO framework can automatically balance the trade-off between the two criteria by employing bespoke stability and clinical significance losses. Our approach efficiently optimizes all hyper-parameters, including the FAE architecture and clustering parameters, within a few steps. This not only accelerates the process but also consistently yields robust MRI subregion delineations and provides survival predictions with strong statistical validation.
胶质母细胞瘤是一种常见于成年人的侵袭性脑肿瘤,其微观结构和血管模式表现出异质性。对其亚区的描绘可以促进区域靶向治疗的发展。然而,当前用于该任务的无监督学习技术由于聚类算法的波动而在可靠性方面面临挑战,特别是在处理来自不同患者队列的数据时。此外,稳定的聚类结果并不能保证具有临床意义。为了确定这些子区域的临床相关性,我们将使用从它们中提取的放射组学特征进行生存预测。在此之后,在结果稳定性和临床相关性之间取得平衡是一项重大挑战,而超参数调整所需的大量时间进一步加剧了这一挑战。在这项研究中,我们引入了一种多目标贝叶斯优化(MOBO)框架,该框架利用特征增强自动编码器(FAE)和定制损失来评估聚类算法的可重复性及其结果的临床相关性。具体来说,我们将这些过程的全部内容嵌入到 MOBO 框架中,使用不同的高斯过程(GPs)对其进行建模。所提出的 MOBO 框架可以通过使用专门的稳定性和临床意义损失来自动平衡这两个标准之间的权衡。我们的方法可以在几步内有效地优化所有超参数,包括 FAE 架构和聚类参数。这不仅加快了进程,而且还始终如一地产生稳健的 MRI 子区域描绘,并提供具有强大统计验证的生存预测。