Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010 Bern, Switzerland.
Phys Med Biol. 2024 Aug 12;69(16). doi: 10.1088/1361-6560/ad6950.
Dynamic trajectory radiotherapy (DTRT) and dynamic mixed-beam arc therapy (DYMBARC) exploit non-coplanarity and, for DYMBARC, simultaneously optimized photon and electron beams. Margin concepts to account for set-up uncertainties during delivery are ill-defined for electron fields. We develop robust optimization for DTRT&DYMBARC and compare dosimetric plan quality and robustness for both techniques and both optimization strategies for four cases.Cases for different treatment sites and clinical target volume (CTV) to planning target volume (PTV) margins,m, were investigated. Dynamic gantry-table-collimator photon paths were optimized to minimize PTV/organ-at-risk (OAR) overlap in beam's-eye-view and minimize potential photon multileaf collimator (MLC) travel. For DYMBARC plans, non-isocentric partial electron arcs or static fields with shortened source-to-surface distance (80 cm) were added. Direct aperture optimization (DAO) was used to simultaneously optimize MLC-based intensity modulation for both photon and electron beams yielding deliverable PTV-based DTRT&DYMBARC plans. Robust-optimized plans used the same paths/arcs/fields. DAO with stochastic programming was used for set-up uncertainties with equal weights in all translational directions and magnitudeδsuch thatm= 0.7δ. Robust analysis considered random errors in all directions with or without an additional systematic error in the worst 3D direction for the adjacent OARs.Electron contribution was 7%-41% of target dose depending on the case and optimization strategy for DYMBARC. All techniques achieved similar CTV coverage in the nominal (no error) scenario. OAR sparing was overall better in the DYMBARC plans than in the DTRT plans and DYMBARC plans were generally more robust to the considered uncertainties. OAR sparing was better in the PTV-based than in robust-optimized plans for OARs abutting or overlapping with the target volume, but more affected by uncertainties.Better plan robustness can be achieved with robust optimization than with margins. Combining electron arcs/fields with non-coplanar photon trajectories further improves robustness and OAR sparing.
动态轨迹放射治疗(DTRT)和动态混合束弧形治疗(DYMBARC)利用非共面性,并且对于 DYMBARC,同时优化光子和电子束。在输送过程中,用于说明设置不确定性的边缘概念对于电子场来说是不明确的。我们为 DTRT&DYMBARC 开发了稳健优化,并比较了这两种技术以及两种优化策略的四个案例的剂量学计划质量和稳健性。研究了不同治疗部位和临床靶区(CTV)与计划靶区(PTV)边缘 m 的案例。优化了动态龙门 - 桌子 - 准直器光子路径,以最小化射野视图中 PTV/器官 - 风险(OAR)重叠,并最小化潜在的光子多叶准直器(MLC)运动。对于 DYMBARC 计划,添加了非等中心部分电子弧形或缩短源皮距(80 厘米)的静态场。直接孔径优化(DAO)用于同时优化光子和电子束的基于 MLC 的强度调制,产生可输送的基于 PTV 的 DTRT&DYMBARC 计划。稳健优化计划使用相同的路径/弧形/场。使用带有随机规划的 DAO 用于设置不确定性,在所有平移方向上具有相等的权重和大小δ,使得 m=0.7δ。稳健分析考虑了所有方向的随机误差,或者在相邻 OAR 的最坏 3D 方向上考虑了额外的系统误差。电子贡献取决于案例和 DYMBARC 的优化策略,在 7%-41%的目标剂量之间。在名义(无误差)情况下,所有技术都实现了相似的 CTV 覆盖。在 DYMBARC 计划中,OAR 保护总体上优于 DTRT 计划,并且 DYMBARC 计划对考虑到的不确定性通常更稳健。对于与靶区相邻或重叠的 OAR,基于 PTV 的计划比稳健优化的计划具有更好的 OAR 保护,但受不确定性的影响更大。与边缘相比,稳健优化可以实现更好的计划稳健性。将电子弧形/场与非共面光子轨迹相结合,可以进一步提高稳健性和 OAR 保护。