Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Gabriela Narutowicza 11/12 Street, 80-233 Gdańsk, Poland.
Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Gabriela Narutowicza 11/12 Street, 80-233 Gdańsk, Poland.
Sci Total Environ. 2024 Nov 1;949:175074. doi: 10.1016/j.scitotenv.2024.175074. Epub 2024 Jul 29.
Exponential increases in energy consumption and wastewater have often irreversible environmental impacts. As a result, bio-electrochemical devices like microbial fuel cells (MFCs), which convert chemical energy in organic matter to electricity using exoelectrogenic bacteria, have gained interest. However, operational factors affecting efficiency and energy output need further study. This research investigated bioenergy production and COD, TN, and TP removal in mesoscale floating treatment wetlands (FTW-MFC) using Phragmites australis, Iris pseudacorus, and a mix of both. The Iris FTW-MFC achieved a high voltage peak of 2100 mV. The maximum power densities of 484 mW/m, 1196 mW/m, and 441 mW/m were observed for Phragmites, Iris, and mixed FTW-MFCs, respectively. Despite promising bioenergy yields, pollutant removal was unsatisfactory. A low area/height ratio (0.38 m/0.8 m) and high loading rate (18.1 g/m·d COD) boosted bioenergy output but hindered treatment performance and stressed plants, causing root decay. No significant pollutant removal differences were found between FTW-MFC and FTW. Higher relative plant growth rates occurred in the FTW-MFC. Microbial analysis shown that representatives of Pseudomonas and Clostridium species were consistently found across all samples, involved in both organic compound transformation and electricity generation, contributed to successful microscale results. A supporting microscale MFC experiment showed wastewater composition's impact on bioenergy yield and pollutant removal. Pre-inoculated reactors improved organic matter transformation and electricity generation, while aeration increased voltage and treatment performance. The role of plants requires further verification in future experiments.
能源消耗和废水的指数级增长通常会对环境造成不可逆转的影响。因此,利用能够向外输出电子的细菌将有机物中的化学能转化为电能的生物电化学装置,如微生物燃料电池(MFC),受到了广泛关注。然而,影响效率和能量输出的运行因素仍需要进一步研究。本研究采用芦苇(Phragmites australis)、鸢尾(Iris pseudacorus)和两者的混合物,在中观漂浮湿地(FTW-MFC)中研究生物能源的产生和 COD、TN 和 TP 的去除。Iris FTW-MFC 达到了 2100 mV 的高电压峰值。芦苇、鸢尾和混合 FTW-MFC 的最大功率密度分别为 484 mW/m、1196 mW/m 和 441 mW/m。尽管生物能源产量可观,但污染物去除效果并不理想。低面积/高度比(0.38 m/0.8 m)和高负荷率(18.1 g/m·d COD)提高了生物能源的输出,但却阻碍了处理性能,对植物造成压力,导致根部腐烂。FTW-MFC 和 FTW 之间没有发现显著的污染物去除差异。FTW-MFC 中的植物相对生长率更高。微生物分析表明,假单胞菌和梭菌属的代表种在所有样品中都有发现,它们参与了有机化合物的转化和电能的产生,对微尺度的成功结果做出了贡献。一个支持性的微尺度 MFC 实验表明,废水成分对生物能源产量和污染物去除有影响。预接种的反应器提高了有机物的转化和发电效率,而曝气则提高了电压和处理性能。植物的作用需要在未来的实验中进一步验证。