Suppr超能文献

基于分子指纹的机器学习模型预测不同植物组织中全氟和多氟烷基物质的生物累积。

Prediction of PFAS bioaccumulation in different plant tissues with machine learning models based on molecular fingerprints.

机构信息

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China.

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China.

出版信息

Sci Total Environ. 2024 Nov 10;950:175091. doi: 10.1016/j.scitotenv.2024.175091. Epub 2024 Jul 28.

Abstract

Due to the wastewater irrigation or biosolid application, per- and polyfluoroalkyl substances (PFASs) have been widely detected in agriculture soil and hence crops or vegetables. Consumption of contaminated crops and vegetables is considered as an important route of human exposure to PFASs. Machine learning (ML) models have been developed to predict PFAS uptake by plants with majority focus on roots. However, ML models for predicting accumulation of PFASs in above ground edible tissues have yet to be investigated. In this study, 811 data points covering 22 PFASs represented by molecular fingerprints and 5 plant categories (namely the root class, leaf class, cereals, legumes, and fruits) were used for model development. The Extreme Gradient Boosting (XGB) model demonstrated the most favorable performance to predict the bioaccumulation factors (BAFs) in all the 4 plant tissues (namely root, leaf, stem, and fruit) achieving coefficients of determination R as 0.82-0.93. Feature importance analysis showed that the top influential factors for BAFs varied among different plant tissues, indicating that model developed for root concentration prediction may not be feasible for above ground parts. The XGB model's performance was further demonstrated by comparing with data from pot experiments measuring BAFs of 12 PFASs in lettuce. The correlation between predicted and measured results was favorable for BAFs in both lettuce roots and leaves with R values of 0.76 and 0.81. This study developed a robust approach to comprehensively understand the uptake of PFASs in both plant roots and above ground parts, offering key insights into PFAS risk assessment and food safety.

摘要

由于废水灌溉或生物固体的应用,全氟和多氟烷基物质(PFASs)已在农业土壤中广泛检出,因此在农作物或蔬菜中也有检出。食用受污染的农作物和蔬菜被认为是人类接触 PFASs 的一个重要途径。机器学习(ML)模型已被开发用于预测植物对 PFASs 的吸收,这些模型主要关注植物的根部。然而,用于预测地上可食用组织中 PFASs 积累的 ML 模型尚未得到研究。在这项研究中,使用了 811 个数据点,涵盖了 22 种以分子指纹表示的 PFASs 和 5 种植物类别(即根类、叶类、谷物、豆类和水果),用于模型开发。极端梯度提升(XGB)模型在所有 4 种植物组织(即根、叶、茎和果实)中预测生物积累因子(BAFs)的表现最为出色,决定系数 R 为 0.82-0.93。特征重要性分析表明,对 BAFs 影响最大的因素因植物组织而异,这表明为根部浓度预测开发的模型可能不适用于地上部分。通过与测量生菜中 12 种 PFASs 的 BAF 的盆栽实验数据进行比较,进一步证明了 XGB 模型的性能。预测结果与实测结果之间的相关性良好,生菜根部和叶片的 R 值分别为 0.76 和 0.81。本研究开发了一种全面了解植物根部和地上部分 PFASs 吸收的稳健方法,为 PFASs 风险评估和食品安全提供了重要见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验