Suppr超能文献

利用住院婴儿的压力和位置信息自动检测异常的全身运动。

Automated detection of abnormal general movements from pressure and positional information in hospitalized infants.

作者信息

Maitre Nathalie L, Kjeldsen Caitlin P, Duncan Andrea F, Guzzetta Andrea, Jeanvoine Arnaud

机构信息

Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA.

Department of Pediatrics at Children's Hospital of Philadelphia, Philadelphia, PA, USA.

出版信息

Pediatr Res. 2025 Feb;97(2):598-607. doi: 10.1038/s41390-024-03387-x. Epub 2024 Jul 30.

Abstract

BACKGROUND

Prechtl's general movements assessment (GMA) allows visual recognition of movement patterns that, when abnormal (cramped synchronized, or CS), have very high sensitivity in predicting later neuromotor disorders; however, training requirements and subjective perceptions from some clinicians may hinder universal adoption of the GMA in the newborn period.

METHODS

To address this, we used a three-phased approach to design a preliminary and clinically-oriented approach to automated CS GMA detection. 335 hospitalized infants were dually recorded on video and a pressure-sensor mat that collected time, spatial, and pressure data. Video recordings were scored by advanced GMA readers. We then conducted a series of unsupervised machine learning and supervised classification modeling with features extracted from clinician- and mat-driven datasets. Finally, the resulting algorithm was converted to a software interface.

RESULTS

A classification model combining normalization, clustering, and decision tree modeling resulted in the highest sensitivity for CS movements (100%). Results were delivered via the software interface within 20 min of data recording.

CONCLUSION

The combination of clinical research, machine learning, and repurposing of existing sensor mat technology produced a feasible preliminary approach to automatically detect abnormal GMA in infants while still in the NICU. Further refinements of software and algorithms are needed.

IMPACT STATEMENT

Machine learning can differentiate cramped synchronized general movement patterns in the neonatal intensive care unit with good sensitivity and specificity. Increasing access to the GMA through automated detection methods may allow for earlier identification of a greater number of children at high risk for movement delay. Large studies leveraging new artificial intelligence approaches could increase the impact of such detection.

摘要

背景

普雷赫特尔的全身运动评估(GMA)能够直观识别运动模式,当这些模式异常(痉挛同步运动,即CS)时,对预测后期神经运动障碍具有很高的敏感性;然而,培训要求以及一些临床医生的主观认知可能会阻碍GMA在新生儿期的广泛应用。

方法

为解决这一问题,我们采用了三阶段方法来设计一种初步的、面向临床的自动CS GMA检测方法。对335名住院婴儿同时进行视频记录以及使用压力传感器垫记录,压力传感器垫可收集时间、空间和压力数据。视频记录由高级GMA评估人员评分。然后,我们利用从临床医生和垫子驱动的数据集中提取的特征,进行了一系列无监督机器学习和监督分类建模。最后,将所得算法转换为软件界面。

结果

结合归一化、聚类和决策树建模的分类模型对CS运动的敏感性最高(100%)。在数据记录后20分钟内通过软件界面给出结果。

结论

临床研究、机器学习以及对现有传感器垫技术的重新利用相结合,产生了一种可行的初步方法,可在婴儿仍在新生儿重症监护病房(NICU)时自动检测异常GMA。软件和算法还需要进一步完善。

影响声明

机器学习能够以良好的敏感性和特异性区分新生儿重症监护病房中的痉挛同步全身运动模式。通过自动检测方法增加GMA的可及性,可能有助于更早地识别更多有运动发育迟缓高风险的儿童。利用新人工智能方法的大型研究可能会增加这种检测的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验