Suppr超能文献

机器学习方法评估扭动阶段婴儿的一般运动:一项初步研究。

Machine learning approaches to evaluate infants' general movements in the writhing stage-a pilot study.

机构信息

Department of Pediatrics, University of Virginia Children's Hospital, PO Box 800828, Charlottesville, VA, 22908, USA.

Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA.

出版信息

Sci Rep. 2024 Feb 24;14(1):4522. doi: 10.1038/s41598-024-54297-1.

Abstract

The goals of this study are to describe machine learning techniques employing computer-vision movement algorithms to automatically evaluate infants' general movements (GMs) in the writhing stage. This is a retrospective study of infants admitted 07/2019 to 11/2021 to a level IV neonatal intensive care unit (NICU). Infant GMs, classified by certified expert, were analyzed in two-steps (1) determination of anatomic key point location using a NICU-trained pose estimation model [accuracy determined using object key point similarity (OKS)]; (2) development of a preliminary movement model to distinguish normal versus cramped-synchronized (CS) GMs using cosine similarity and autocorrelation of major joints. GMs were analyzed using 85 videos from 74 infants; gestational age at birth 28.9 ± 4.1 weeks and postmenstrual age (PMA) at time of video 35.9 ± 4.6 weeks The NICU-trained pose estimation model was more accurate (0.91 ± 0.008 OKS) than a generic model (0.83 ± 0.032 OKS, p < 0.001). Autocorrelation values in the lower limbs were significantly different between normal (5 videos) and CS GMs (5 videos, p < 0.05). These data indicate that automated pose estimation of anatomical key points is feasible in NICU patients and that a NICU-trained model can distinguish between normal and CS GMs. These preliminary data indicate that machine learning techniques may represent a promising tool for earlier CP risk assessment in the writhing stage and prior to hospital discharge.

摘要

本研究旨在描述采用计算机视觉运动算法的机器学习技术,以自动评估扭动期婴儿的一般运动(GMs)。这是一项回顾性研究,对象为 2019 年 7 月至 2021 年 11 月入住四级新生儿重症监护病房(NICU)的婴儿。由认证专家对婴儿 GMs 进行分类,并分两步进行分析:(1)使用经过 NICU 培训的姿势估计模型确定解剖关键点位置(使用对象关键点相似度(OKS)确定准确性);(2)使用余弦相似度和主要关节的自相关开发初步运动模型,以区分正常 GMs 和局促同步(CS)GMs。共分析了 74 名婴儿的 85 个视频;出生时的胎龄为 28.9±4.1 周,视频时的校正胎龄(PMA)为 35.9±4.6 周。经过 NICU 培训的姿势估计模型比通用模型(0.83±0.032 OKS,p<0.001)更准确(0.91±0.008 OKS)。正常(5 个视频)和 CS GMs(5 个视频,p<0.05)下肢的自相关值有显著差异。这些数据表明,在 NICU 患者中,对解剖关键点进行自动姿势估计是可行的,并且 NICU 培训的模型可以区分正常和 CS GMs。这些初步数据表明,机器学习技术可能是在扭动期和出院前更早评估 CP 风险的有前途的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b68/10894291/f58959b29c4d/41598_2024_54297_Fig5_HTML.jpg

相似文献

2
High Prevalence of Abnormal General Movements in Hospitalized Very Low Birth Weight Infants.
Am J Perinatol. 2022 Oct;29(14):1541-1547. doi: 10.1055/s-0041-1722943. Epub 2021 Feb 3.
3
Effect of early intervention on premature infants' general movements.
Brain Dev. 2015 Apr;37(4):387-93. doi: 10.1016/j.braindev.2014.07.002. Epub 2014 Jul 19.
4
General Movements Assessment of infants in the neonatal intensive care unit following surgery.
J Paediatr Child Health. 2015 Oct;51(10):1007-11. doi: 10.1111/jpc.12886. Epub 2015 Mar 31.
5
Characteristics of general movements in preterm infants assessed by computer-based video analysis.
Physiother Theory Pract. 2018 Apr;34(4):286-292. doi: 10.1080/09593985.2017.1391908. Epub 2017 Oct 24.
6
9
Assessment of general movements and heart rate variability in prediction of neurodevelopmental outcome in preterm infants.
Early Hum Dev. 2016 Aug;99:7-12. doi: 10.1016/j.earlhumdev.2016.05.014. Epub 2016 Jun 30.

本文引用的文献

2
An Automated Approach for General Movement Assessment: A Pilot Study.
Front Pediatr. 2021 Aug 25;9:720502. doi: 10.3389/fped.2021.720502. eCollection 2021.
4
SCREENING FOR BARRETT'S ESOPHAGUS WITH PROBE-BASED CONFOCAL LASER ENDOMICROSCOPY VIDEOS.
Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:1659-1663. doi: 10.1109/isbi45749.2020.9098630. Epub 2020 May 22.
6
Novel AI driven approach to classify infant motor functions.
Sci Rep. 2021 May 10;11(1):9888. doi: 10.1038/s41598-021-89347-5.
8
The future of General Movement Assessment: The role of computer vision and machine learning - A scoping review.
Res Dev Disabil. 2021 Mar;110:103854. doi: 10.1016/j.ridd.2021.103854. Epub 2021 Feb 8.
9
High Prevalence of Abnormal General Movements in Hospitalized Very Low Birth Weight Infants.
Am J Perinatol. 2022 Oct;29(14):1541-1547. doi: 10.1055/s-0041-1722943. Epub 2021 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验