Department of Pediatrics, University of Virginia Children's Hospital, PO Box 800828, Charlottesville, VA, 22908, USA.
Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA.
Sci Rep. 2024 Feb 24;14(1):4522. doi: 10.1038/s41598-024-54297-1.
The goals of this study are to describe machine learning techniques employing computer-vision movement algorithms to automatically evaluate infants' general movements (GMs) in the writhing stage. This is a retrospective study of infants admitted 07/2019 to 11/2021 to a level IV neonatal intensive care unit (NICU). Infant GMs, classified by certified expert, were analyzed in two-steps (1) determination of anatomic key point location using a NICU-trained pose estimation model [accuracy determined using object key point similarity (OKS)]; (2) development of a preliminary movement model to distinguish normal versus cramped-synchronized (CS) GMs using cosine similarity and autocorrelation of major joints. GMs were analyzed using 85 videos from 74 infants; gestational age at birth 28.9 ± 4.1 weeks and postmenstrual age (PMA) at time of video 35.9 ± 4.6 weeks The NICU-trained pose estimation model was more accurate (0.91 ± 0.008 OKS) than a generic model (0.83 ± 0.032 OKS, p < 0.001). Autocorrelation values in the lower limbs were significantly different between normal (5 videos) and CS GMs (5 videos, p < 0.05). These data indicate that automated pose estimation of anatomical key points is feasible in NICU patients and that a NICU-trained model can distinguish between normal and CS GMs. These preliminary data indicate that machine learning techniques may represent a promising tool for earlier CP risk assessment in the writhing stage and prior to hospital discharge.
本研究旨在描述采用计算机视觉运动算法的机器学习技术,以自动评估扭动期婴儿的一般运动(GMs)。这是一项回顾性研究,对象为 2019 年 7 月至 2021 年 11 月入住四级新生儿重症监护病房(NICU)的婴儿。由认证专家对婴儿 GMs 进行分类,并分两步进行分析:(1)使用经过 NICU 培训的姿势估计模型确定解剖关键点位置(使用对象关键点相似度(OKS)确定准确性);(2)使用余弦相似度和主要关节的自相关开发初步运动模型,以区分正常 GMs 和局促同步(CS)GMs。共分析了 74 名婴儿的 85 个视频;出生时的胎龄为 28.9±4.1 周,视频时的校正胎龄(PMA)为 35.9±4.6 周。经过 NICU 培训的姿势估计模型比通用模型(0.83±0.032 OKS,p<0.001)更准确(0.91±0.008 OKS)。正常(5 个视频)和 CS GMs(5 个视频,p<0.05)下肢的自相关值有显著差异。这些数据表明,在 NICU 患者中,对解剖关键点进行自动姿势估计是可行的,并且 NICU 培训的模型可以区分正常和 CS GMs。这些初步数据表明,机器学习技术可能是在扭动期和出院前更早评估 CP 风险的有前途的工具。