Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona, 08028, Spain.
Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Barcelona, 08028, Spain.
J Mater Chem B. 2024 Aug 28;12(34):8285-8309. doi: 10.1039/d4tb01114g.
Glutathione (GSH) is one of the most common thiol-containing molecules discovered in biological systems, and it plays an important role in many cellular functions, where changes in physiological glutathione levels contribute to the progress of a variety of diseases. Molecular imaging employing fluorescent probes is thought to be a sensitive technique for online fluorescence detection of GSH. Although various molecular probes for (intracellular) GSH sensing have been reported, some aspects remain unanswered, such as quantitative intracellular analysis, dynamic monitoring, and compatibility with biological environment. Some of these drawbacks can be overcome by sensors based on nanostructured materials, that have attracted considerable attention owing to their exceptional properties, including a large surface area, heightened electro-catalytic activity, and robust mechanical resilience, for which they have become integral components in the development of highly sensitive chemo- and biosensors. Additionally, engineered nanomaterials have demonstrated significant promise in enhancing the precision of disease diagnosis and refining treatment specificity. The aim of this review is to investigate recent advancements in fabricated nanomaterials tailored for detecting GSH. Specifically, it examines various material categories, encompassing carbon, polymeric, quantum dots (QDs), covalent organic frameworks (COFs), metal-organic frameworks (MOFs), metal-based, and silicon-based nanomaterials, applied in the fabrication of chemo- and biosensors. The fabrication of nano-biosensors, mechanisms, and methodologies employed for GSH detection utilizing these fabricated nanomaterials will also be elucidated. Remarkably, there is a noticeable absence of existing reviews specifically dedicated to the nanomaterials for GSH detection since they are not comprehensive in the case of nano-fabrication, mechanisms and methodologies of detection, as well as applications in various biological environments. This research gap presents an opportune moment to thoroughly assess the potential of nanomaterial-based approaches in advancing GSH detection methodologies.
谷胱甘肽 (GSH) 是生物系统中发现的最常见的含硫醇分子之一,它在许多细胞功能中发挥着重要作用,生理 GSH 水平的变化导致了多种疾病的进展。采用荧光探针的分子成像被认为是一种用于在线检测 GSH 的灵敏技术。尽管已经报道了各种用于(细胞内)GSH 传感的分子探针,但仍存在一些方面未得到解答,例如定量的细胞内分析、动态监测和与生物环境的兼容性。一些基于纳米结构材料的传感器可以克服这些缺点,由于其独特的性质,包括大的表面积、增强的电催化活性和稳健的机械弹性,它们已成为高灵敏度化学和生物传感器开发的组成部分。此外,工程纳米材料在提高疾病诊断的准确性和改进治疗特异性方面表现出了巨大的潜力。本综述的目的是研究用于检测 GSH 的定制纳米材料的最新进展。具体而言,它考察了各种材料类别,包括碳、聚合物、量子点 (QDs)、共价有机框架 (COFs)、金属有机框架 (MOFs)、基于金属的和基于硅的纳米材料,它们在化学和生物传感器的制造中得到了应用。还将阐明利用这些定制纳米材料制造纳米生物传感器的机制和方法,以及它们在各种生物环境中的应用。值得注意的是,由于纳米制造、检测机制和方法以及在各种生物环境中的应用方面不全面,目前还没有专门针对 GSH 检测用纳米材料的现有综述。这一研究空白为全面评估基于纳米材料的方法在推进 GSH 检测方法方面的潜力提供了机会。