Pandey Sudeshana, Oh Yongsuk, Ghimire Mukesh, Son Ji-Won, Lee Minoh, Jun Yongseok
Department of Energy Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea.
Energy Materials Research Center, Clean Energy Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
Chem Commun (Camb). 2024 Aug 15;60(67):8789-8805. doi: 10.1039/d4cc01811g.
The energy transition from fossil fuel-based to renewable energy is a global agenda. At present, a major concern in the green hydrogen economy is the demand for clean fuels and non-noble materials to produce hydrogen through water splitting. Researchers are focusing on addressing this concern with the help of the development of appropriate non-noble-based photo-/electrocatalytic materials. A new class of two-dimensional materials, MXenes, have recently shown tremendous potential for water splitting to produce H a photoelectrochemical process. The unique properties of emerging 2D MXene materials, such as hydrophilic surface functionalities, higher surface-to-volume ratios, and inherent flexibility, present these materials as appropriate photo-/electrocatalytic materials. Unique value addition and innovative strategies such as the introduction of end-group modification, heterojunctions, and nanostructure engineering have shown the potential of MXene materials as emerging photo-/electrocatalysts for water splitting. When integrated with conventional noble metal catalysts, MXene-based catalysts demonstrated a lower overpotential for hydrogen and oxygen evolution reactions and a remarkable boost in performance for enhanced H production rates surpassing those of pristine noble metal-based catalysts. These promote future perspectives for the utilization of chemically synthesized MXenes as alternative photo-/electrocatalysts. Future research direction should focus on MXene synthesis and utilization for surface modification, composite formation, stabilization, and optimization in synthesis methods and post-synthesis treatments. This review highlights the progress in the understanding of fundamental mechanisms and issues associated with water splitting, influencing factors of MXenes, their value addition role, and application strategies for water splitting, including performance, challenges, and outlook of MXene-based photo-/electrocatalysts, in the last five years.
从基于化石燃料向可再生能源的能源转型是一项全球议程。目前,绿色氢能经济中的一个主要关注点是对清洁燃料和非贵金属材料的需求,以便通过水分解来生产氢气。研究人员正致力于借助开发合适的非贵金属基光/电催化材料来解决这一问题。一类新型二维材料——MXenes,最近在通过光/电化学过程进行水分解以产生氢气方面展现出了巨大潜力。新兴二维MXene材料的独特性质,如亲水性表面官能团、更高的表面体积比和固有的柔韧性,使这些材料成为合适的光/电催化材料。诸如引入端基修饰、异质结和纳米结构工程等独特的附加值和创新策略,已显示出MXene材料作为新兴的水分解光/电催化剂的潜力。当与传统贵金属催化剂结合时,基于MXene的催化剂在析氢和析氧反应中表现出较低的过电位,并且在提高氢气生成速率方面性能显著提升,超过了原始的基于贵金属的催化剂。这些促进了将化学合成的MXenes用作替代光/电催化剂的未来前景。未来的研究方向应聚焦于MXene的合成以及在表面改性、复合材料形成、稳定性以及合成方法和合成后处理的优化方面的应用。本综述重点介绍了过去五年在理解水分解的基本机制和相关问题、MXenes的影响因素、它们的附加值作用以及水分解的应用策略(包括基于MXene的光/电催化剂的性能、挑战和前景)方面取得的进展。