Thalji Mohammad R, Mahmoudi Farzaneh, Bachas Leonidas G, Park Chinho
KENTECH Institute for Hydrogen Energy, Korea Institute of Energy Technology (KENTECH), 21 KENTECH-gil, Naju 58330, Jeollanam-do, Republic of Korea.
Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
Int J Mol Sci. 2025 Aug 19;26(16):8019. doi: 10.3390/ijms26168019.
Developing efficient and sustainable hydrogen production technologies is critical for advancing the global clean energy transition. This review highlights recent progress in the design, synthesis, and electrocatalytic applications of MXene-based materials for electrochemical water splitting. It discusses the fundamental mechanisms of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), and the structure-function relationships that govern electrocatalytic behavior. Emphasis is placed on the intrinsic structural and surface properties of MXenes, such as their layered architecture and tunable surface chemistry, which render them promising candidates for electrocatalysis. Despite these advantages, several practical limitations hinder their full potential, including oxidation susceptibility, restacking, and a limited number of active sites. Several studies have addressed these challenges using diverse engineering strategies, such as heteroatom doping; surface functionalization; and constructing MXene-based composites with metal chalcogenides, oxides, phosphides, and conductive polymers. These modifications have significantly improved catalytic activity, charge transfer kinetics, and long-term operational stability under various electrochemical conditions. Finally, this review outlines key knowledge gaps and emerging research directions, including defect engineering, single-atom integration, and system-level design, to accelerate the development of MXene-based electrocatalysts for sustainable hydrogen production.
开发高效且可持续的制氢技术对于推动全球清洁能源转型至关重要。本综述重点介绍了基于MXene的材料在电化学水分解的设计、合成及电催化应用方面的最新进展。讨论了析氢反应(HER)和析氧反应(OER)的基本机制,以及支配电催化行为的结构-功能关系。重点关注MXene的固有结构和表面性质,例如其层状结构和可调的表面化学性质,这使其成为电催化的有前景的候选材料。尽管有这些优点,但一些实际限制阻碍了它们的全部潜力,包括氧化敏感性、重新堆叠和活性位点数量有限。一些研究使用了多种工程策略来应对这些挑战,例如杂原子掺杂、表面功能化以及构建与金属硫族化物、氧化物、磷化物和导电聚合物的基于MXene的复合材料。这些修饰在各种电化学条件下显著提高了催化活性、电荷转移动力学和长期运行稳定性。最后,本综述概述了关键的知识空白和新兴的研究方向,包括缺陷工程、单原子整合和系统级设计,以加速用于可持续制氢的基于MXene的电催化剂的开发。