Suppr超能文献

基于机器学习的舌下微循环功能障碍分析在 2 型糖尿病患者心血管风险评估及心血管-肾脏-代谢综合征分期中的应用。

Machine Learning-Assisted Analysis of Sublingual Microcirculatory Dysfunction for Early Cardiovascular Risk Evaluation and Cardiovascular-Kidney-Metabolic Syndrome Stage in Patients With Type 2 Diabetes Mellitus.

机构信息

Department of Hypertension and Endocrinology, Daping Hospital, Center for Hypertension and Metabolic Diseases, Army Medical University of PLA, Chongqing Institute of Hypertension, Chongqing, China.

出版信息

Diabetes Metab Res Rev. 2024 Sep;40(6):e3835. doi: 10.1002/dmrr.3835.

Abstract

AIMS

To examine whether sublingual microcirculation can be used as an effective and noninvasive method for assessing cardiovascular, kidney, and metabolic risks in patients with type 2 diabetes mellitus (T2DM).

MATERIALS AND METHODS

This cross-sectional observational study enrolled 186 patients with T2DM. All patients were evaluated using the Framingham General Cardiovascular Risk Score (FGCRS) and cardiovascular-kidney-metabolic (CKM) syndrome stage. Side-stream dark-field microscopy was used for sublingual microcirculation, including total and perfused vessel density (TVD and PVD). Multiple machine-learning prediction models have been developed for CKM risk and stage assessment in T2DM patients. Receiver operating characteristic (ROC) curves were generated to determine cutoff points.

RESULTS

Compared to patients with T2DM, diabetic patients with subclinical atherosclerosis (SA) had a greater CV risk, as measured by the FGCRS, accompanied by markedly decreased microcirculation perfusion. Microcirculatory parameters (TVD and PVD), including carotid intima-media thickness (IMT), brachial-ankle pulse wave velocity (ba-PWV), and FGCRS, were closely associated with SA incidence. Microcirculatory parameters, Index (DM), and cut-off points were used to screen for SA in patients with T2DM. Furthermore, a new set of four factors identified through machine learning showed optimal sensitivity and specificity for detecting CKM risk in patients with T2DM. Decreased microcirculatory perfusion served as a useful early marker for CKM syndrome risk stratification in patients with T2DM without SA.

CONCLUSIONS

Sublingual microcirculatory dysfunction is closely correlated with the risk of SA and CKM risk in T2DM patients. Sublingual microcirculation could be a novel tool for assessing the CKM syndrome stage in patients with T2DM.

摘要

目的

探讨舌下微循环能否作为评估 2 型糖尿病(T2DM)患者心血管、肾脏和代谢风险的有效、无创方法。

材料和方法

本横断面观察性研究纳入了 186 例 T2DM 患者。所有患者均采用 Framingham 心血管总体风险评分(FGCRS)和心血管-肾脏-代谢(CKM)综合征分期进行评估。采用侧流暗场显微镜检测舌下微循环,包括总血管密度(TVD)和灌注血管密度(PVD)。建立了多种机器学习预测模型,用于评估 T2DM 患者的 CKM 风险和分期。绘制受试者工作特征(ROC)曲线以确定截断点。

结果

与 T2DM 患者相比,伴亚临床动脉粥样硬化(SA)的糖尿病患者的 CV 风险更高,这可通过 FGCRS 测量得到,同时伴有明显的微循环灌注减少。微循环参数(TVD 和 PVD),包括颈动脉内膜中层厚度(IMT)、肱踝脉搏波速度(ba-PWV)和 FGCRS,与 SA 发生率密切相关。微循环参数、指数(DM)和截断点可用于筛查 T2DM 患者的 SA。此外,通过机器学习确定的一组新的四个因素对检测 T2DM 患者的 CKM 风险具有最佳的敏感性和特异性。微循环灌注减少可作为无 SA 的 T2DM 患者 CKM 综合征风险分层的有用早期标志物。

结论

舌下微循环功能障碍与 T2DM 患者的 SA 风险和 CKM 风险密切相关。舌下微循环可能成为评估 T2DM 患者 CKM 综合征分期的新工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验