Romanchek Gregory, Shoop Greyson, Abbaszadeh Shiva
Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois Urbana-Champaign, Urbana, USA.
Department of Electrical and Computer Engineering, University of California at Santa Cruz, Santa Cruz, USA.
Bioalgorithms Medsyst. 2023;19(1):9-16. doi: 10.5604/01.3001.0054.1817. Epub 2023 Dec 30.
The intrinsic resolution of Positron Emission Tomography (PET) imaging is bound by positron range effects, wherein the radioactive decay of the imaging tracer occurs at a disjoint location from positron annihilation. Compounding this issue are the variable ranges positrons achieve, depending on tracer species (the energy they are emitted with) and the medium they travel in (bone vs soft tissue, for example) - causing the range to span more than an order of magnitude across various study scenarios (~0.19 mm to ~6.4 mm). Radioisotopes, such as Zr-89, exhibit dual emissions of positron and prompt gammas, offering an opportunity for accurate tracer positioning as prompt gammas originate from the tracer location. These multi-emission radiotracers have historically suffered from increased noise corresponding to the third gamma interfering in annihilation gamma coincidence pairing. Recent advancements, however, have brought to light the unique property of annihilation gammas having scattering kinematics distinct from random gamma pairs. These properties are born from the singular quantum entanglement state available to the gamma pair following para-positronium decay which prescribes linearly orthogonal polarization. Such coherent polarization is not shared by prompt gamma emissions, offering an opportunity for their discrimination. We present an investigation into this technique, comparing the distribution of relevant scattering kinematics of entangled annihilation gammas and corresponding prompt gammas via a Monte Carlo simulation.
正电子发射断层扫描(PET)成像的固有分辨率受正电子射程效应的限制,其中成像示踪剂的放射性衰变发生在与正电子湮灭不连续的位置。使这个问题更加复杂的是,正电子的射程各不相同,这取决于示踪剂种类(它们发射时的能量)以及它们传播的介质(例如,骨骼与软组织)——导致在各种研究场景中射程跨越超过一个数量级(约0.19毫米至约6.4毫米)。放射性同位素,如Zr-89,会同时发射正电子和瞬发伽马射线,由于瞬发伽马射线源自示踪剂位置,因此为精确的示踪剂定位提供了机会。这些多发射放射性示踪剂在历史上一直存在与湮灭伽马符合配对中干扰的第三个伽马射线相对应的噪声增加的问题。然而,最近的进展揭示了湮灭伽马射线具有与随机伽马射线对不同的散射运动学的独特特性。这些特性源于正电子素衰变后伽马射线对可获得的奇异量子纠缠态,该态规定了线性正交极化。这种相干极化不是瞬发伽马射线发射所共有的,为它们的区分提供了机会。我们通过蒙特卡罗模拟对该技术进行了研究,比较了纠缠湮灭伽马射线和相应瞬发伽马射线的相关散射运动学分布。