Suppr超能文献

埃塞俄比亚南部阿尔巴明奇镇孕妇的最佳产前保健利用水平及其相关因素:世界卫生组织新推荐的产前保健8项模式

Level of optimal antenatal care utilization and its associated factors among pregnant women in Arba Minch town, southern Ethiopia: new WHO-recommended ANC 8 model.

作者信息

Deresa Dinagde Dagne, Feyisa Gizu Tola, Afework Hana Tadesse, Chewaka Menen Tilahun, Wada Habtamu Wana

机构信息

Department of Midwifery, College of Health Sciences, Mattu University, Mattu, Ethiopia.

Department of Midwifery, College of Medicine and Health Sciences, Mizan Tepi University, Mizan Tepi, Ethiopia.

出版信息

Front Glob Womens Health. 2024 Jul 16;5:1259637. doi: 10.3389/fgwh.2024.1259637. eCollection 2024.

Abstract

BACKGROUND

To fully realize the life-saving and health-promoting benefits of antenatal care (ANC), the latest World Health Organization (WHO) recommendations call for pregnant women to have at least eight contacts with skilled healthcare providers. This increased number of recommended ANC visits represents a shift toward a more comprehensive, individualized approach to prenatal care. The focus is on health promotion, disease prevention, and the early detection and management of complications during pregnancy. However, in sub-Saharan African countries, including Ethiopia, the coverage rate for this level of recommended antenatal care is only 58%. Given this relatively low utilization, identifying the key risk factors that prevent adequate antenatal care would have significant implications for increasing overall ANC uptake in these regions.

OBJECTIVE

The aim of the present study was to assess the level of optimal antenatal care utilization and its associated factors among pregnant women in Arba Minch town, southern Ethiopia in 2023 using the new WHO-recommended ANC 8 model.

METHODS

An institution-based cross-sectional study was conducted among 416 mothers who were enrolled between 1 December 2022 and 30 January 2023. The total sample size was allocated proportionately to the number of women who delivered at each public health facility. Thus, systematic sampling was applied. Kobo Toolbox was used for data collection and cleaning, which was then analyzed using SPSS Version 26. Statistical significance was determined at a -value <0.05.

RESULTS

In this study, the level of optimal antenatal care was 41% [95% confidence interval (CI): 37-45.3]. The associated factors with optimal antenatal care were the presence of pregnancy danger signs [adjusted odds ratios (AOR) = 4.1, 95% CI: 1.87-8.82], having bad obstetric history (AOR = 3.90, 95% CI: 1.94-7.83), antenatal contact at hospital (AOR = 5.11, 95% CI: 2.28-11.21), having good knowledge about antenatal care (AOR = 2.26, 95% CI: 1.15-4.44), women's high decision-making power (AOR = 3.9, 95% CI: 1.2-7.63), and male partner involvement (AOR = 2.0, 95% CI: 1.04-3.78) were positively associated with optimal antenatal care utilization.

CONCLUSION

The level of optimal antenatal follow-up is still low. Therefore, it is crucial to provide more information during the antenatal contacts to lower the rate of women discontinued from antenatal care.

摘要

背景

为充分实现产前护理(ANC)的挽救生命和促进健康的益处,世界卫生组织(WHO)的最新建议要求孕妇至少与熟练的医疗保健提供者进行八次接触。推荐的产前检查次数增加,代表着向更全面、个性化的产前护理方法转变。重点是促进健康、预防疾病以及早期发现和管理孕期并发症。然而,在包括埃塞俄比亚在内的撒哈拉以南非洲国家,这种推荐水平的产前护理覆盖率仅为58%。鉴于利用率相对较低,确定阻碍充分产前护理的关键风险因素对提高这些地区的整体产前检查利用率具有重大意义。

目的

本研究的目的是使用世界卫生组织推荐的新的ANC 8模型,评估2023年埃塞俄比亚南部阿尔巴明奇镇孕妇的最佳产前护理利用水平及其相关因素。

方法

在2022年12月1日至2023年1月30日期间登记的416名母亲中进行了一项基于机构的横断面研究。总样本量按比例分配到每个公共卫生设施分娩的妇女数量。因此,采用了系统抽样。使用Kobo Toolbox进行数据收集和清理,然后使用SPSS 26版进行分析。在P值<0.05时确定统计学显著性。

结果

在本研究中,最佳产前护理水平为41%[95%置信区间(CI):37 - 45.3]。与最佳产前护理相关的因素包括存在妊娠危险信号[调整后的优势比(AOR)= 4.1,95% CI:1.87 - 8.82]、有不良产科史(AOR = 3.90,95% CI:1.94 - 7.83)、在医院进行产前接触(AOR = 5.11,95% CI:2.28 - 11.21)、对产前护理有良好了解(AOR = 2.26,95% CI:1.15 - 4.44)、女性的高决策权(AOR = 3.9,95% CI:1.2 - 7.63)以及男性伴侣的参与(AOR = 2.0,95% CI:1.04 - 3.78)与最佳产前护理利用呈正相关。

结论

最佳产前随访水平仍然较低。因此,在产前接触期间提供更多信息以降低妇女退出产前护理的比率至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/212c/11286477/9970661a1886/fgwh-05-1259637-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验