The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
The Translational Research Institute for Neurological Disorders, Department of Neurosurgery; The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, China.
ACS Appl Mater Interfaces. 2024 Aug 14;16(32):41916-41926. doi: 10.1021/acsami.4c09211. Epub 2024 Jul 31.
Photosensitizer-based phototherapies, including photodynamic therapy (PDT) and photothermal therapy (PTT), offer safe treatment modalities for tumor ablation with spatiotemporal precision. After photons are absorbed, PDT creates localized chemical damage by generating reactive oxygen species (ROS), while PTT induces localized thermal damage. However, PDT still faces hypoxic tumor challenges, while PTT encounters issues related to heat resistance and potential overheating. The combination of PDT and PTT shows great potential as an effective anticancer strategy. By targeting lysosomes with carefully designed phototherapeutic reagents for combined phototherapy, rapid dysfunction and cell death in cancer cells can be induced, showing promise for cancer treatment. Herein, two α-α-linked bisBODIPYs with tetraphenylethene (TPE) moieties are designed and synthesized. These TPE-substituted bisBODIPYs expand the absorption into NIR range (λ/λ ∼ 740/810 nm) and confer aggregation-induced emission (AIE) activity (λ ∼ 912 nm). Moreover, these bisBODIPYs self-assemble with surfactant F-127 into nanoparticles (NPs), which efficiently generate ROS (O and OH) in both solution and cellular environments and demonstrate superior photothermal conversion efficiencies (η ∼ 68.3%) along with exceptional photothermal stability. More importantly, these NPs showed lysosomal targeting and remarkable tumor ablation in cellular and murine models, indicating their potential in precision tumor therapy.
基于光敏剂的光疗方法,包括光动力疗法(PDT)和光热疗法(PTT),为肿瘤消融提供了具有时空精度的安全治疗方式。光子被吸收后,PDT 通过产生活性氧(ROS)来产生局部化学损伤,而 PTT 则诱导局部热损伤。然而,PDT 仍然面临缺氧肿瘤的挑战,而 PTT 则遇到与耐热性和潜在过热相关的问题。PDT 和 PTT 的联合具有作为有效抗癌策略的巨大潜力。通过用精心设计的光疗试剂靶向溶酶体进行联合光疗,可以诱导癌细胞的快速功能障碍和细胞死亡,为癌症治疗带来希望。在此,设计并合成了两个具有四苯乙烯(TPE)部分的 α-α 连接的双 BODIPY。这些 TPE 取代的双 BODIPY 将吸收扩展到近红外范围(λ/λ ∼ 740/810nm)并赋予聚集诱导发射(AIE)活性(λ ∼ 912nm)。此外,这些双 BODIPY 与表面活性剂 F-127 自组装成纳米颗粒(NPs),在溶液和细胞环境中均能有效产生 ROS(O 和 OH),并表现出优异的光热转换效率(η ∼ 68.3%)和出色的光热稳定性。更重要的是,这些 NPs 在细胞和小鼠模型中表现出溶酶体靶向和显著的肿瘤消融作用,表明它们在精准肿瘤治疗中的潜力。