Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, 100050 Beijing, China.
J Integr Neurosci. 2024 Jul 25;23(7):141. doi: 10.31083/j.jin2307141.
Hypoxic-ischemic injury of neurons is a pathological process observed in several neurological conditions, including ischemic stroke and neonatal hypoxic-ischemic brain injury (HIBI). An optimal treatment strategy for these conditions remains elusive. The present study delved deeper into the molecular alterations occurring during the injury process in order to identify potential therapeutic targets.
Oxygen-glucose deprivation/reperfusion (OGD/R) serves as an established model for the simulation of HIBI. This study utilized RNA sequencing to analyze rat primary hippocampal neurons that were subjected to either 0.5 or 2 h of OGD, followed by 0, 9, or 18 h of reperfusion. Differential expression analysis was conducted to identify genes dysregulated during OGD/R. Time-series analysis was used to identify genes exhibiting similar expression patterns over time. Additionally, functional enrichment analysis was conducted to explore their biological functions, and protein-protein interaction (PPI) network analyses were performed to identify hub genes. Quantitative real-time polymerase chain reaction (qRT-PCR) was used for validation of hub-gene expression.
The study included a total of 24 samples. Analysis revealed distinct transcriptomic alterations after OGD/R processes, with significant dysregulation of genes such as , , and . In the OGD process, 76 genes, in two identified clusters, showed a consistent increase in expression; functional analysis showed involvement of inflammatory responses and signaling pathways like tumor necrosis factor (TNF), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and interleukin 17 (IL-17). PPI network analysis suggested that , , , , and were potential hub genes. In the reperfusion process, 274 genes, in three clusters, showed initial upregulation followed by downregulation; functional analysis suggested association with apoptotic processes and neuronal death regulation. PPI network analysis identified , , , , , and as key hub genes. qRT-PCR validated these trends.
The present study provides a comprehensive transcriptomic profile of an OGD/R process. Key hub genes and pathways were identified, offering potential targets for neuroprotection after hypoxic ischemia.
神经元的缺氧缺血性损伤是包括缺血性中风和新生儿缺氧缺血性脑损伤(HIBI)在内的几种神经状况的病理过程。对于这些情况,仍然没有理想的治疗策略。本研究更深入地研究了损伤过程中发生的分子变化,以确定潜在的治疗靶标。
氧葡萄糖剥夺/再灌注(OGD/R)可作为模拟 HIBI 的成熟模型。本研究使用 RNA 测序来分析经历 0.5 或 2 小时 OGD 后再灌注 0、9 或 18 小时的大鼠原代海马神经元。进行差异表达分析以鉴定 OGD/R 期间失调的基因。时间序列分析用于鉴定随时间具有相似表达模式的基因。此外,进行功能富集分析以探索它们的生物学功能,并进行蛋白质-蛋白质相互作用(PPI)网络分析以鉴定枢纽基因。使用定量实时聚合酶链反应(qRT-PCR)验证枢纽基因的表达。
本研究共包括 24 个样本。分析显示 OGD/R 后存在明显的转录组改变,基因如 、 、 和 等的表达显著失调。在 OGD 过程中,两个鉴定的簇中的 76 个基因表现出一致的表达增加;功能分析表明涉及炎症反应和信号通路,如肿瘤坏死因子(TNF)、核因子κB 轻链增强子的激活 B 细胞(NF-κB)和白细胞介素 17(IL-17)。PPI 网络分析表明 、 、 、 和 可能是潜在的枢纽基因。在再灌注过程中,三个簇中的 274 个基因最初上调,然后下调;功能分析表明与凋亡过程和神经元死亡调节有关。PPI 网络分析鉴定 、 、 、 、 和 为关键枢纽基因。qRT-PCR 验证了这些趋势。
本研究提供了 OGD/R 过程的综合转录组谱。鉴定了关键枢纽基因和途径,为缺氧缺血后神经保护提供了潜在靶点。