Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA.
Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA; Immunology Department, St Jude Children's Research Hospital, Memphis, TN, USA.
Cell Rep. 2024 Aug 27;43(8):114547. doi: 10.1016/j.celrep.2024.114547. Epub 2024 Jul 30.
During chronic infection, virus-specific CD8 cytotoxic T lymphocytes (CTLs) progressively lose their ability to mount effective antiviral responses. This "exhaustion" is coupled to persistent upregulation of inhibitory receptor programmed death-1 (PD-1) (Pdcd1)-key in suppressing antiviral CTL responses. Here, we investigate allelic Pdcd1 subnuclear localization and transcription during acute and chronic lymphocytic choriomeningitis virus (LCMV) infection in mice. Pdcd1 alleles dissociate from transcriptionally repressive chromatin domains (lamin B) in virus-specific exhausted CTLs but not in naive or effector CTLs. Relative to naive CTLs, nuclear positioning and Pdcd1-lamina dissociation in exhausted CTLs reflect loss of Pdcd1 promoter methylation and greater PD-1 upregulation, although a direct correlation is not observed in effector cells, 8 days post-infection. Genetic deletion of B lymphocyte-induced maturation protein 1 (Blimp-1) enhances Pdcd1-lamina dissociation in effector CTLs, suggesting that Blimp-1 contributes to maintaining Pdcd1 localization to repressive lamina. Our results identify mechanisms governing Pdcd1 subnuclear localization and the broader role of chromatin dynamics in T cell exhaustion.
在慢性感染期间,病毒特异性 CD8 细胞毒性 T 淋巴细胞(CTL)逐渐丧失其产生有效抗病毒反应的能力。这种“耗竭”与持续上调抑制性受体程序性死亡-1(PD-1)(Pdcd1)有关,PD-1 是抑制抗病毒 CTL 反应的关键。在这里,我们研究了急性和慢性淋巴细胞脉络丛脑膜炎病毒(LCMV)感染中小鼠 Pdcd1 等位基因的亚核定位和转录。在病毒特异性耗竭 CTL 中,Pdcd1 等位基因与转录抑制性染色质域(lamin B)分离,但在幼稚或效应 CTL 中则不分离。与幼稚 CTL 相比,耗竭 CTL 中的核定位和 Pdcd1-层分离反映了 Pdcd1 启动子甲基化的丧失和 PD-1 的更高表达,但在感染后 8 天的效应细胞中没有观察到直接相关性。B 淋巴细胞诱导成熟蛋白 1(Blimp-1)的遗传缺失增强了效应 CTL 中的 Pdcd1-层分离,表明 Blimp-1 有助于维持 Pdcd1 到抑制性层的定位。我们的研究结果确定了调节 Pdcd1 亚核定位的机制以及染色质动力学在 T 细胞耗竭中的更广泛作用。