Zhao Danyang, Ni Jianjun, Li Tianlin, Li Yongzhi, Yin Qing, Xiao Bin, Meng Qingkun, Sui Yanwei, Qi Jiqiu
China University of Mining and Technology, School of Materials Science and Physics, Xuzhou 221116, PR China; Jiangsu Province Engineering Laboratory of High-Efficient Energy Storage Technology and Equipment, China University of Mining and Technology, Xuzhou 221116, PR China.
China University of Mining and Technology, School of Materials Science and Physics, Xuzhou 221116, PR China.
J Colloid Interface Sci. 2025 Jan;677(Pt A):120-129. doi: 10.1016/j.jcis.2024.07.210. Epub 2024 Jul 27.
Aiming at the key problem of Na insertion difficulty and low charge transfer efficiency of activated carbon materials. It is an effective strategy to increase the lattice spacing and defect concentration by doping to reduce the ion diffusion resistance and improve the kinetics. Hence, anthracitic coal is used to prepare activated carbon (AC) and B,P-doped activated carbon (B,P-AC) as the cathode and anode materials for high-performance all-carbon SICs, respectively. AC cathode material has high specific surface area and reasonable micropore structure, which shows excellent capacitance performance. B,P-AC anode material has the advantages of extremely high specific surface area (1856.1 m/g), expanded interlayer spacing (0.40 nm) and uniform distribution of B and P heteroatoms. Hence, B,P-AC anode achieves a highly reversible Na storage capacity of 243 mAh/g at a current density of 0.05 A/g. Density functional theory (DFT) calculations further verify that B,P-AC has stronger Na storage performance. The final assembled B,P-AC//AC SIC offers a high energy density of 109.78 Wh kg and a high-power density of 10.03 kW kg. The high-performance coal-derived activated carbon of this work provides a variety of options for industrial production of electrode materials for sodium ion capacitors.
针对活性炭材料存在的钠嵌入困难和电荷转移效率低的关键问题。通过掺杂增加晶格间距和缺陷浓度以降低离子扩散电阻并改善动力学是一种有效的策略。因此,分别采用无烟煤制备了活性炭(AC)和硼、磷掺杂活性炭(B,P-AC)作为高性能全碳钠离子电容器的阴极和阳极材料。AC阴极材料具有高比表面积和合理的微孔结构,表现出优异的电容性能。B,P-AC阳极材料具有极高的比表面积(1856.1 m²/g)、扩大的层间距(0.40 nm)以及硼和磷杂原子均匀分布的优点。因此,B,P-AC阳极在0.05 A/g的电流密度下实现了243 mAh/g的高度可逆钠存储容量。密度泛函理论(DFT)计算进一步验证了B,P-AC具有更强的钠存储性能。最终组装的B,P-AC//AC钠离子电容器具有109.78 Wh/kg的高能量密度和10.03 kW/kg的高功率密度。这项工作中高性能的煤基活性炭为钠离子电容器电极材料的工业化生产提供了多种选择。