The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310018, China.
School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
Biomed Pharmacother. 2024 Sep;178:117219. doi: 10.1016/j.biopha.2024.117219. Epub 2024 Jul 30.
A transdermal delivery system offers high bioavailability and favorable patient adherence, constituting an optimal approach for localized administration in rheumatoid arthritis (RA) treatment. However, the stratum corneum (SC) impedes the delivery efficiency of conventional transdermal drug delivery systems. Microneedles (MNs) can temporarily create micropores within the SC, enabling drug distribution via bypassing this barrier and enhancing transdermal delivery effectiveness. Notably, MNs provide a painless method of drug delivery through the skin and may directly modulate inflammation in immune cells by delivering drugs via the lymphatic system during transdermal administration. However, the MN delivery system is not suitable for drugs with low water solubility and stability. Additionally, major concerns exist regarding the safety of using MN delivery for highly cytotoxic drugs, given that it could result in high local drug concentration at the delivery site. While MNs exhibit some degree of targeted delivery to the immune and inflammatory environment, their targeting efficiency remains suboptimal. Nanoformulations have the potential to significantly address the limitations of MNs in RA treatment by improving drug targeting, solubility, stability, and biocompatibility. Therefore, this review provides a concise overview of the advantages, disadvantages, and mechanisms of different types of MNs for RA treatment. It specifically focuses on the application and advantages of combining nanoformulation with MNs for RA treatment and summarizes the current trends in the development of nanoformulations combined with MNs in the field of RA treatment, offering theoretical support for future advancements and clinical applications.
透皮给药系统具有生物利用度高和患者顺应性好的特点,是治疗类风湿关节炎(RA)局部给药的最佳方法。然而,角质层(SC)阻碍了常规透皮给药系统的药物传递效率。微针(MN)可以在 SC 内暂时产生微孔,通过绕过该屏障来分配药物,从而提高透皮传递效率。值得注意的是,MN 通过皮肤提供了一种无痛的药物输送方法,并且可以通过在透皮给药期间通过淋巴系统输送药物,直接调节免疫细胞中的炎症。然而,MN 给药系统不适合水溶性和稳定性低的药物。此外,由于 MN 给药可能导致给药部位的局部药物浓度高,因此对于使用 MN 给药的高细胞毒性药物的安全性存在重大担忧。虽然 MN 表现出一定程度的对免疫和炎症环境的靶向输送,但它们的靶向效率仍然不理想。纳米制剂有可能通过提高药物靶向性、溶解度、稳定性和生物相容性来显著解决 MN 在 RA 治疗中的局限性。因此,本综述简要概述了不同类型的 MN 在 RA 治疗中的优缺点和作用机制。它特别关注纳米制剂与 MN 联合应用于 RA 治疗的应用和优势,并总结了纳米制剂与 MN 联合在 RA 治疗领域的发展趋势,为未来的进展和临床应用提供了理论支持。
Expert Opin Drug Deliv. 2022-4
Curr Drug Targets. 2014-3
Int J Nanomedicine. 2023
Drug Dev Ind Pharm. 2018-11-27
Drug Deliv Transl Res. 2025-5-15
Hum Cell. 2024-11-28