Suppr超能文献

炎症小体抑制纳米寡聚物对健康和患病三维人运动和前额叶皮质脑类器官中太空诱导病理具有神经保护作用。

Inflammasome-Inhibiting Nanoligomers Are Neuroprotective against Space-Induced Pathology in Healthy and Diseased Three-Dimensional Human Motor and Prefrontal Cortex Brain Organoids.

机构信息

Sachi Bio, 685 S Arthur Avenue, Colorado Technology Center, Louisville, Colorado 80027, United States.

NASA Ames Research Center, Moffett Field, California, California 94035, United States.

出版信息

ACS Chem Neurosci. 2024 Aug 21;15(16):3009-3021. doi: 10.1021/acschemneuro.4c00160. Epub 2024 Jul 31.

Abstract

The microgravity and space environment has been linked to deficits in neuromuscular and cognitive capabilities, hypothesized to occur due to accelerated aging and neurodegeneration in space. While the specific mechanisms are still being investigated, spaceflight-associated neuropathology is an important health risk to astronauts and space tourists and is being actively investigated for the development of appropriate countermeasures. However, such space-induced neuropathology offers an opportunity for accelerated screening of therapeutic targets and lead molecules for treating neurodegenerative diseases. Here, we show a proof-of-concept high-throughput target screening (on Earth), target validation, and mitigation of microgravity-induced neuropathology using our Nanoligomer platform, onboard the 43-day SpaceX CRS-29 mission to the International Space Station. First, comparing 3D healthy and diseased prefrontal cortex (PFC, for cognition) and motor neuron (MN, for neuromuscular function) organoids, we assessed space-induced pathology using biomarkers relevant to Alzheimer's disease (AD), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS). Both healthy and diseased PFC and MN organoids showed significantly enhanced neurodegeneration in space, as measured through relevant disease biomarkers, when compared to their respective Earth controls. Second, we tested the top two lead molecules, NI112 that targeted NF-κB and NI113 that targeted IL-6. We observed that these Nanoligomers significantly mitigate the AD, FTD, and ALS relevant biomarkers like amyloid beta-42 (Aβ42), phosphorylated tau (pTau), Kallikrein (KLK-6), Tar DNA-binding protein 43 (TDP-43), and others. Moreover, the 43-day Nanoligomer treatment of these brain organoids did not appear to cause any observable toxicity or safety issues in the target organoid tissue, suggesting good tolerability for these molecules in the brain at physiologically relevant doses. Together, these results show significant potential for both the development and translation of NI112 and NI113 molecules as potential neuroprotective countermeasures for safer space travel and demonstrate the usefulness of the space environment for rapid, high-throughput screening of targets and lead molecules for clinical translation. We assert that the use of microgravity in drug development and screening may ultimately benefit millions of patients suffering from debilitating neurodegenerative diseases on Earth.

摘要

微重力和空间环境与神经肌肉和认知能力的缺陷有关,据推测,这是由于太空中的加速衰老和神经退行性变引起的。虽然具体机制仍在研究中,但与太空飞行相关的神经病理学是宇航员和太空游客的重要健康风险,正在积极研究适当的对策。然而,这种太空诱导的神经病理学为治疗神经退行性疾病的治疗靶点和先导分子的加速筛选提供了机会。在这里,我们展示了一种使用我们的 Nanoligomer 平台进行高通量靶标筛选(在地球上)、靶标验证和减轻微重力诱导的神经病理学的概念验证,该平台搭载在为期 43 天的 SpaceX CRS-29 任务中,前往国际空间站。首先,通过比较 3D 健康和患病的前额叶皮层(用于认知)和运动神经元(用于神经肌肉功能)类器官,我们使用与阿尔茨海默病(AD)、额颞叶痴呆(FTD)和肌萎缩性侧索硬化症(ALS)相关的生物标志物评估了太空引起的病理学。与各自的地球对照相比,健康和患病的 PFC 和 MN 类器官在太空中显示出明显增强的神经退行性变,这可以通过相关疾病生物标志物来衡量。其次,我们测试了排名前两位的先导分子 NI112(针对 NF-κB)和 NI113(针对 IL-6)。我们观察到,这些 Nanoligomers 显著减轻了与 AD、FTD 和 ALS 相关的生物标志物,如β淀粉样蛋白 42(Aβ42)、磷酸化 tau(pTau)、激肽释放酶 6(KLK-6)、TDP-43 等。此外,这些脑类器官在 43 天的 Nanoligomer 治疗中,目标类器官组织似乎没有出现任何可观察到的毒性或安全问题,表明这些分子在生理相关剂量下在大脑中具有良好的耐受性。总之,这些结果表明,NI112 和 NI113 分子作为更安全太空旅行的潜在神经保护对策具有很大的发展和转化潜力,并证明了太空环境在快速、高通量筛选用于临床转化的靶点和先导分子方面的有用性。我们断言,在药物开发和筛选中使用微重力可能最终使地球上数以百万计患有衰弱性神经退行性疾病的患者受益。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验