Suppr超能文献

使用转激活和转分化评估 RNA 变体。

RNA variant assessment using transactivation and transdifferentiation.

机构信息

The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia.

Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia.

出版信息

Am J Hum Genet. 2024 Aug 8;111(8):1673-1699. doi: 10.1016/j.ajhg.2024.06.018. Epub 2024 Jul 30.

Abstract

Understanding the impact of splicing and nonsense variants on RNA is crucial for the resolution of variant classification as well as their suitability for precision medicine interventions. This is primarily enabled through RNA studies involving transcriptomics followed by targeted assays using RNA isolated from clinically accessible tissues (CATs) such as blood or skin of affected individuals. Insufficient disease gene expression in CATs does however pose a major barrier to RNA based investigations, which we show is relevant to 1,436 Mendelian disease genes. We term these "silent" Mendelian genes (SMGs), the largest portion (36%) of which are associated with neurological disorders. We developed two approaches to induce SMG expression in human dermal fibroblasts (HDFs) to overcome this limitation, including CRISPR-activation-based gene transactivation and fibroblast-to-neuron transdifferentiation. Initial transactivation screens involving 40 SMGs stimulated our development of a highly multiplexed transactivation system culminating in the 6- to 90,000-fold induction of expression of 20/20 (100%) SMGs tested in HDFs. Transdifferentiation of HDFs directly to neurons led to expression of 193/516 (37.4%) of SMGs implicated in neurological disease. The magnitude and isoform diversity of SMG expression following either transactivation or transdifferentiation was comparable to clinically relevant tissues. We apply transdifferentiation and/or gene transactivation combined with short- and long-read RNA sequencing to investigate the impact that variants in USH2A, SCN1A, DMD, and PAK3 have on RNA using HDFs derived from affected individuals. Transactivation and transdifferentiation represent rapid, scalable functional genomic solutions to investigate variants impacting SMGs in the patient cell and genomic context.

摘要

了解剪接和无义变异对 RNA 的影响对于解决变异分类以及它们是否适合精准医疗干预至关重要。这主要是通过涉及转录组学的 RNA 研究来实现,然后使用从临床可获得的组织(CATs)如受影响个体的血液或皮肤中分离的 RNA 进行靶向分析。然而,CATs 中疾病基因表达不足是 RNA 研究的主要障碍,我们证明这与 1436 个孟德尔疾病基因有关。我们将这些基因称为“沉默”孟德尔基因(SMGs),其中最大的一部分(36%)与神经紊乱有关。我们开发了两种方法在人真皮成纤维细胞(HDF)中诱导 SMG 表达,以克服这一限制,包括基于 CRISPR 激活的基因转录激活和成纤维细胞向神经元转分化。最初涉及 40 个 SMG 的转录激活筛选促使我们开发了一种高度多重转录激活系统,最终使 20/20(100%)SMG 的表达在 HDF 中得到 6-90000 倍的诱导。HDF 直接向神经元的转分化导致 516 个(37.4%)与神经疾病相关的 SMG 表达。无论是转录激活还是转分化,SMG 表达的幅度和异构体多样性都与临床相关组织相当。我们应用转分化和/或基因转录激活,结合短读长和长读长 RNA 测序,使用来自受影响个体的 HDF 研究 USH2A、SCN1A、DMD 和 PAK3 中的变异对 RNA 的影响。转录激活和转分化是快速、可扩展的功能基因组解决方案,可在患者细胞和基因组背景下研究影响 SMG 的变异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b8d/11339655/aa4d61abeafd/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验