Conner Abigail A, Yao Yuan, Chan Sarah W, Jain Deepak, Wong Suzanne M, Yim Evelyn K F, Rizwan Muhammad
Department of Chemical Engineering, University of Waterloo, Waterloo, Canada.
Center for Biotechnology and Bioengineering, University of Waterloo, Waterloo, Canada.
Nanotechnology. 2024 Aug 22;35(45). doi: 10.1088/1361-6528/ad6994.
The expansion of pluripotent stem cells (PSCs)remains a critical barrier to their use in tissue engineering and regenerative medicine. Biochemical methods for PSC expansion are known to produce heterogeneous cell populations with varying states of pluripotency and are cost-intensive, hindering their clinical translation. Engineering biomaterials to physically control PSC fate offers an alternative approach. Surface or substrate topography is a promising design parameter for engineering biomaterials. Topographical cues have been shown to elicit profound effects on stem cell differentiation and proliferation. Previous reports have shown isotropic substrate topographies to be promising in expanding PSCs. However, the optimal feature to promote PSC proliferation and the pluripotent state has not yet been determined. In this work, the MultiARChitecture (MARC) plate is developed to conduct a high-throughput analysis of topographical cues in a 96-well plate format. The MARC plate is a reproducible and customizable platform for the analysis of multiple topographical patterns and features and is compatible with both microscopic assays and molecular biology techniques. The MARC plate is used to evaluate the expression of pluripotency markers, andand the differentiation markeras well as the proliferation of murine embryonic stem (mES) cells. Our systematic analyses identified three topographical patterns that maintain pluripotency in mES cells after multiple passages: 1m pillars (1m spacing, square arrangement), 2m wells (c-c () = 4, 4m), and 5m pillars (c-c () = 7.5, 7.5m). This study represents a step towards developing a biomaterial platform for controlled murine PSC expansion.
多能干细胞(PSC)的扩增仍然是其在组织工程和再生医学中应用的关键障碍。已知用于PSC扩增的生化方法会产生具有不同多能状态的异质细胞群体,并且成本高昂,阻碍了它们的临床转化。设计生物材料以物理控制PSC命运提供了一种替代方法。表面或基底拓扑结构是用于设计生物材料的一个有前景的设计参数。已表明拓扑线索对干细胞的分化和增殖有深远影响。先前的报道表明各向同性的基底拓扑结构在扩增PSC方面很有前景。然而,促进PSC增殖和多能状态的最佳特征尚未确定。在这项工作中,开发了MultiARChitecture(MARC)板,以96孔板的形式对拓扑线索进行高通量分析。MARC板是一个可重复且可定制的平台,用于分析多种拓扑图案和特征,并且与显微镜检测和分子生物学技术兼容。MARC板用于评估多能性标志物的表达以及小鼠胚胎干(mES)细胞的分化标志物和增殖情况。我们的系统分析确定了三种拓扑图案,在多次传代后能维持mES细胞的多能性:1μm柱(1μm间距,方形排列)、2μm孔(中心距(c-c)=4μm,4μm)和5μm柱(中心距(c-c)=7.5μm,7.5μm)。这项研究朝着开发用于可控小鼠PSC扩增的生物材料平台迈出了一步。