Suppr超能文献

一种三维片上瓣膜微生理系统揭示了早期钙化性主动脉瓣疾病进展过程中的细胞周期进程、胆固醇代谢和蛋白质稳态。

A three-dimensional valve-on-chip microphysiological system implicates cell cycle progression, cholesterol metabolism and protein homeostasis in early calcific aortic valve disease progression.

作者信息

Tandon Ishita, Woessner Alan E, Ferreira Laίs A, Shamblin Christine, Vaca-Diez Gustavo, Walls Amanda, Kuczwara Patrick, Applequist Alexis, Nascimento Denise F, Tandon Swastika, Kim Jin-Woo, Rausch Manuel, Timek Tomasz, Padala Muralidhar, Kinter Michael T, Province Dennis, Byrum Stephanie D, Quinn Kyle P, Balachandran Kartik

机构信息

Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA.

Arkansas Integrative Metabolic Research Center, University of Arkansas, Fayetteville, AR, USA.

出版信息

Acta Biomater. 2024 Sep 15;186:167-184. doi: 10.1016/j.actbio.2024.07.036. Epub 2024 Jul 30.

Abstract

BACKGROUND

Calcific aortic valve disease (CAVD) is one of the most common forms of valvulopathy, with a 50 % elevated risk of a fatal cardiovascular event, and greater than 15,000 annual deaths in North America alone. The treatment standard is valve replacement as early diagnostic, mitigation, and drug strategies remain underdeveloped. The development of early diagnostic and therapeutic strategies requires the fabrication of effective in vitro valve mimetic models to elucidate early CAVD mechanisms.

METHODS

In this study, we developed a multilayered physiologically relevant 3D valve-on-chip (VOC) system that incorporated aortic valve mimetic extracellular matrix (ECM), porcine aortic valve interstitial cell (VIC) and endothelial cell (VEC) co-culture and dynamic mechanical stimuli. Collagen and glycosaminoglycan (GAG) based hydrogels were assembled in a bilayer to mimic healthy or diseased compositions of the native fibrosa and spongiosa. Multiphoton imaging and proteomic analysis of healthy and diseased VOCs were performed.

RESULTS

Collagen-based bilayered hydrogel maintained the phenotype of the VICs. Proteins related to cellular processes like cell cycle progression, cholesterol biosynthesis, and protein homeostasis were found to be significantly altered and correlated with changes in cell metabolism in diseased VOCs. This study suggested that diseased VOCs may represent an early, adaptive disease initiation stage, which was corroborated by human aortic valve proteomic assessment.

CONCLUSIONS

In this study, we developed a collagen-based bilayered hydrogel to mimic healthy or diseased compositions of the native fibrosa and spongiosa layers. When the gels were assembled in a VOC with VECs and VICs, the diseased VOCs revealed key insights about the CAVD initiation process.

STATEMENT OF SIGNIFICANCE

Calcific aortic valve disease (CAVD) elevates the risk of death due to cardiovascular pathophysiology by 50 %, however, prevention and mitigation strategies are lacking, clinically. Developing tools to assess early disease would significantly aid in the prevention of disease and in the development of therapeutics. Previously, studies have utilized collagen and glycosaminoglycan-based hydrogels for valve cell co-cultures, valve cell co-cultures in dynamic environments, and inorganic polymer-based multilayered hydrogels; however, these approaches have not been combined to make a physiologically relevant model for CAVD studies. We fabricated a bi-layered hydrogel that closely mimics the aortic valve and used it for valve cell co-culture in a dynamic platform to gain mechanistic insights into the CAVD initiation process using proteomic and multiphoton imaging assessment.

摘要

背景

钙化性主动脉瓣疾病(CAVD)是最常见的瓣膜病形式之一,发生致命心血管事件的风险升高50%,仅在北美每年就有超过15000人死亡。治疗标准是瓣膜置换,因为早期诊断、缓解和药物策略仍未充分发展。早期诊断和治疗策略的开发需要构建有效的体外瓣膜模拟模型,以阐明CAVD的早期机制。

方法

在本研究中,我们开发了一种多层生理相关的片上瓣膜(VOC)系统,该系统整合了主动脉瓣模拟细胞外基质(ECM)、猪主动脉瓣间质细胞(VIC)和内皮细胞(VEC)共培养以及动态机械刺激。基于胶原蛋白和糖胺聚糖(GAG)的水凝胶组装成双层,以模拟天然纤维层和海绵层的健康或病变组成。对健康和病变的VOC进行多光子成像和蛋白质组分析。

结果

基于胶原蛋白的双层水凝胶维持了VIC的表型。发现与细胞周期进程、胆固醇生物合成和蛋白质稳态等细胞过程相关的蛋白质发生了显著变化,并且与病变VOC中细胞代谢的变化相关。本研究表明,病变的VOC可能代表疾病的早期适应性起始阶段,这一点得到了人类主动脉瓣蛋白质组评估的证实。

结论

在本研究中,我们开发了一种基于胶原蛋白的双层水凝胶,以模拟天然纤维层和海绵层的健康或病变组成。当将这些凝胶与VEC和VIC组装到VOC中时,病变的VOC揭示了有关CAVD起始过程的关键见解。

意义声明

钙化性主动脉瓣疾病(CAVD)因心血管病理生理学使死亡风险升高50%,然而临床上缺乏预防和缓解策略。开发评估早期疾病的工具将显著有助于疾病预防和治疗开发。此前,研究已将基于胶原蛋白和糖胺聚糖的水凝胶用于瓣膜细胞共培养、动态环境中的瓣膜细胞共培养以及基于无机聚合物的多层水凝胶;然而,这些方法尚未结合起来构建用于CAVD研究的生理相关模型。我们制造了一种紧密模拟主动脉瓣的双层水凝胶,并将其用于动态平台中的瓣膜细胞共培养,以通过蛋白质组学和多光子成像评估深入了解CAVD起始过程的机制。

相似文献

2
Simulation of early calcific aortic valve disease in a 3D platform: A role for myofibroblast differentiation.
J Mol Cell Cardiol. 2016 May;94:13-20. doi: 10.1016/j.yjmcc.2016.03.004. Epub 2016 Mar 17.
3
Heterogeneous multi-laminar tissue constructs as a platform to evaluate aortic valve matrix-dependent pathogenicity.
Acta Biomater. 2019 Oct 1;97:420-427. doi: 10.1016/j.actbio.2019.07.046. Epub 2019 Jul 27.
5
Creation of disease-inspired biomaterial environments to mimic pathological events in early calcific aortic valve disease.
Proc Natl Acad Sci U S A. 2018 Jan 16;115(3):E363-E371. doi: 10.1073/pnas.1704637115. Epub 2017 Dec 27.
6
Endothelial to mesenchymal transformation is induced by altered extracellular matrix in aortic valve endothelial cells.
J Biomed Mater Res A. 2017 Oct;105(10):2729-2741. doi: 10.1002/jbm.a.36133. Epub 2017 Jun 27.
7
Valvular interstitial cells suppress calcification of valvular endothelial cells.
Atherosclerosis. 2015 Sep;242(1):251-260. doi: 10.1016/j.atherosclerosis.2015.07.008. Epub 2015 Jul 17.
8
Transforming growth factor-β1 promotes fibrosis but attenuates calcification of valvular tissue applied as a three-dimensional calcific aortic valve disease model.
Am J Physiol Heart Circ Physiol. 2020 Nov 1;319(5):H1123-H1141. doi: 10.1152/ajpheart.00651.2019. Epub 2020 Sep 28.
9
Chondroitin Sulfate Promotes Interstitial Cell Activation and Calcification in an In Vitro Model of the Aortic Valve.
Cardiovasc Eng Technol. 2022 Jun;13(3):481-494. doi: 10.1007/s13239-021-00586-z. Epub 2021 Nov 4.
10
Bone Morphogenetic Protein Signaling Is Required for Aortic Valve Calcification.
Arterioscler Thromb Vasc Biol. 2016 Jul;36(7):1398-405. doi: 10.1161/ATVBAHA.116.307526. Epub 2016 May 19.

引用本文的文献

1
Calcific aortic stenosis: omics-based target discovery and therapy development.
Eur Heart J. 2025 Feb 14;46(7):620-634. doi: 10.1093/eurheartj/ehae829.

本文引用的文献

1
Aortic valve cell microenvironment: Considerations for developing a valve-on-chip.
Biophys Rev (Melville). 2021 Dec 10;2(4):041303. doi: 10.1063/5.0063608. eCollection 2021 Dec.
2
The Role of Endoplasmic Reticulum Stress in Calcific Aortic Valve Disease.
Can J Cardiol. 2023 Nov;39(11):1571-1580. doi: 10.1016/j.cjca.2023.07.025. Epub 2023 Jul 27.
3
Disease- and sex-specific differences in patients with heart valve disease: a proteome study.
Life Sci Alliance. 2023 Jan 10;6(3). doi: 10.26508/lsa.202201411. Print 2023 Mar.
4
Multi-omics of aortic valve calcification.
Front Cardiovasc Med. 2022 Nov 3;9:1043165. doi: 10.3389/fcvm.2022.1043165. eCollection 2022.
7
Endoplasmic Reticulum Stress and Pathogenesis of Vascular Calcification.
Front Cardiovasc Med. 2022 Jun 16;9:918056. doi: 10.3389/fcvm.2022.918056. eCollection 2022.
8
NAD Metabolism in Cardiac Health, Aging, and Disease.
Circulation. 2021 Nov 30;144(22):1795-1817. doi: 10.1161/CIRCULATIONAHA.121.056589. Epub 2021 Nov 29.
9
CRISPR screens identify cholesterol biosynthesis as a therapeutic target on stemness and drug resistance of colon cancer.
Oncogene. 2021 Dec;40(48):6601-6613. doi: 10.1038/s41388-021-01882-7. Epub 2021 Oct 7.
10
Functional differences between Hsp105/110 family proteins in cell proliferation, cell division, and drug sensitivity.
J Cell Biochem. 2021 Dec;122(12):1958-1967. doi: 10.1002/jcb.30158. Epub 2021 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验