Department of Engineering Physics, Tsinghua University, Beijing , People's Republic of China.
Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education , Beijing, People's Republic of China.
Phys Med Biol. 2024 Aug 14;69(17). doi: 10.1088/1361-6560/ad69fa.
. The rapid and accurate assessment of internal exposure dose is a crucial safeguard for personnel health and safety. This study aims to investigate a precise and efficient GPU Monte Carlo simulation approach for internal exposure dose calculation. It directly calculates doses from common radioactive nuclides intake, likeCo for occupational exposure, allowing personalized assessments.. This study developed a GPU-accelerated Monte Carlo program for internal exposure on radionuclide intake, successfully realizing photoelectronic coupled transport, nuclide simulation, and optimized acceleration. The generation of internal irradiation sources and sampling methods were achieved, along with the establishment of a personalized phantom construction process. Three irradiation scenarios were simulated to assess computational accuracy and efficiency, and to investigate the influence of posture variations on internal dose estimations.. Using the International Commission on Radiological Protection (ICRP) voxel-type phantom, the internal dose of radionuclides in individual organs was calculated, exhibiting relative deviation of less than 3% in comparison to organ dose results interpolated by Specific Absorbed Fractions in ICRP Publication 133. Employing the Chinese reference phantom for calculating internal irradiation dose from the intake of various radionuclides, the use of GPU Monte Carlo program significantly shortened the simulation time compared to using CPU programs, by a factor of 150-500. Internal dose estimation utilizing a seated Chinese phantom revealed up to a 75% maximum difference in organ dose compared to the same phantom in a standing posture.. This study presents a rapid GPU-based simulation method for internal irradiation doses, capable of directly simulating dose outcomes from nuclide intake and accommodating individualized phantoms for more realistic and expeditious calculations tailored to specific internal irradiation scenarios. It provides an effective and feasible tool for precisely calculating internal irradiation doses in real-world scenarios.
. 快速、准确地评估内照射剂量是保障人员健康和安全的关键。本研究旨在探讨一种精确高效的 GPU 蒙特卡罗模拟方法,用于计算内照射剂量。它可以直接计算常见放射性核素摄入(如职业照射中的 Co)的剂量,实现个性化评估。. 本研究开发了一种用于放射性核素摄入内照射的 GPU 加速蒙特卡罗程序,成功实现了光电耦合输运、核素模拟和优化加速。生成了内部辐照源和采样方法,并建立了个性化模型构建过程。模拟了三种辐照情况,以评估计算精度和效率,并研究了姿势变化对内照射剂量估算的影响。. 使用国际辐射防护委员会(ICRP)体素型模型,计算了个体器官中放射性核素的内照射剂量,与 ICRP 出版物 133 中特定吸收分数插值得到的器官剂量结果相比,相对偏差小于 3%。采用中国参考模型计算不同放射性核素摄入的内照射剂量,与使用 CPU 程序相比,GPU 蒙特卡罗程序显著缩短了模拟时间,倍数为 150-500。利用坐姿中国模型估算内照射剂量,与站立姿势相同模型相比,器官剂量最大差异可达 75%。. 本研究提出了一种快速的基于 GPU 的内照射剂量模拟方法,能够直接模拟核素摄入的剂量结果,并适应个体化模型,以便更真实、更快速地计算特定的内照射情况。它为精确计算实际场景中的内照射剂量提供了一种有效可行的工具。