Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, AKH 4L, Vienna 1090, Austria; Austrian Center for Medical Innovation and Technology (ACMIT), Viktor Kaplan-Straße 2/1, Wiener Neustadt 2700, Austria.
Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, AKH 4L, Vienna 1090, Austria.
Dent Mater. 2024 Oct;40(10):1568-1574. doi: 10.1016/j.dental.2024.07.008. Epub 2024 Jul 30.
To design a patient-specific subperiosteal implant for a severely atrophic maxillary ridge using yttria-stabilized additively manufactured zirconia (3YSZ) and evaluate its material properties by applying topology optimization (TO) to replace bulk material with a lattice structure.
A contrast-based segmented skull model from anonymized computed tomography data of a patient was used for the initial anatomical design of the implant for the atrophic maxillary ridge. The implant underwent finite element analysis (FEA) and TO under different occlusal load-bearing conditions. The resulting implant designs, in bulk material and lattice, were evaluated via in-silico tensile tests and 3D printed.
The workflow produced two patient-specific subperiosteal designs: a) an anatomically precise bulk implant, b) a TO lattice implant. In-silico tensile tests revealed that the Young's modulus of yttria-stabilized zirconia is 205 GPa for the bulk material and 83.3 GPa for the lattice. Maximum principal stresses in the implant were 61.14 MPa in bulk material and 278.63 MPa in lattice, both tolerable, indicating the redesigned implant can withstand occlusal forces of 125-250 N per abutment. Furthermore, TO achieved a 13.10 % mass reduction and 208.71 % increased surface area, suggesting improved osteointegration potential.
The study demonstrates the planning and optimization of ceramic implant topology. A further iteration of the implant was successfully implanted in a patient-named use case, employing the same fabrication process and parameters.
使用添加钇稳定氧化锆(3YSZ)的增材制造技术设计用于严重萎缩上颌骨嵴的个体化骨膜下植入物,并通过拓扑优化(TO)用晶格结构替代块状材料来评估其材料性能。
使用来自匿名患者计算机断层扫描数据的基于对比的分段颅骨模型,为萎缩上颌骨嵴的植入物进行初始解剖设计。该植入物在不同的咬合承重条件下进行有限元分析(FEA)和 TO。通过计算机模拟拉伸试验和 3D 打印对块状和晶格两种植入物设计进行评估。
该工作流程生成了两种个体化骨膜下设计:a)解剖精确的块状植入物;b)TO 晶格植入物。计算机模拟拉伸试验表明,氧化钇稳定氧化锆的杨氏模量为块状材料 205 GPa 和晶格 83.3 GPa。在块状材料中,植入物的最大主应力为 61.14 MPa,在晶格中为 278.63 MPa,均在可承受范围内,表明重新设计的植入物可承受每个基牙 125-250 N 的咬合力。此外,TO 实现了 13.10%的质量减轻和 208.71%的表面积增加,表明具有改善的骨整合潜力。
该研究展示了陶瓷植入物拓扑结构的规划和优化。进一步迭代的植入物在患者命名的使用案例中成功植入,采用相同的制造工艺和参数。