Bian Liheng, Li Daoyu, Wang Shuoguang, Teng Chunyang, Wu Jinxuan, Liu Huteng, Xu Hanwen, Chang Xuyang, Zhao Guoqiang, Li Shiyong, Zhang Jun
State Key Laboratory of CNS/ATM & MIIT Key Laboratory of Complex-field Intelligent Sensing, Beijing Institute of Technology, 100081, Beijing, China.
Guangdong Province Key Laboratory of Intelligent Detection in Complex Environment of Aerospace, Land and Sea, Beijing Institute of Technology, Zhuhai, 519088, China.
Nat Commun. 2024 Jul 31;15(1):6459. doi: 10.1038/s41467-024-50288-y.
Millimeter-Wave (MMW) imaging is a promising technique for contactless security inspection. However, the high cost of requisite large-scale antenna arrays hinders its widespread application in high-throughput scenarios. Here, we report a large-scale single-shot MMW imaging framework, achieving low-cost high-fidelity security inspection. We first analyzed the statistical ranking of each array element through 1934 full-sampled MMW echoes. The highest-ranked elements are preferentially selected based on the ranking, building the experimentally optimal sparse sampling strategy that reduces antenna array cost by one order of magnitude. Additionally, we derived an untrained interpretable learning scheme, realizing robust and accurate MMW image reconstruction from sparsely sampled echoes. Last, we developed a neural network for automatic object detection, and experimentally demonstrated successful detection of concealed centimeter-sized targets using 10% sparse array, whereas all the other contemporary approaches failed at such a low sampling ratio. With the strong detection ability and order-of-magnitude cost reduction, we anticipate that this technique provides a practical way for large-scale single-shot MMW imaging.
毫米波(MMW)成像技术在非接触式安检领域具有广阔的应用前景。然而,所需大规模天线阵列的高成本阻碍了其在高通量场景中的广泛应用。在此,我们报道了一种大规模单次毫米波成像框架,可实现低成本的高保真安检。我们首先通过1934个全采样毫米波回波分析了每个阵列单元的统计排序。基于该排序优先选择排名最高的单元,构建了实验最优的稀疏采样策略,将天线阵列成本降低了一个数量级。此外,我们推导了一种无需训练的可解释学习方案,可从稀疏采样回波中实现稳健且准确的毫米波图像重建。最后,我们开发了一种用于自动目标检测的神经网络,并通过实验证明,使用10%的稀疏阵列成功检测到了隐藏的厘米级目标,而所有其他当代方法在如此低的采样率下均无法成功检测。凭借强大的检测能力和数量级的成本降低,我们预计该技术为大规模单次毫米波成像提供了一种实用方法。