Suppr超能文献

具有β分数阶导数的(2 + 1)维海森堡铁磁自旋链模型的动力学分析与孤子解

Dynamical analysis and the soliton solutions of (2+1)-dimensional Heisenberg ferro-magnetic spin chains model with beta fractional derivative.

作者信息

Luo Jie

机构信息

School of Electronic Information and Electrical Engineering, Chengdu University, Chengdu, 610106, People's Republic of China.

出版信息

Sci Rep. 2024 Jul 26;14(1):17684. doi: 10.1038/s41598-024-68153-9.

Abstract

This paper investigates the soliton solutions and dynamical analysis of (2+1)-dimensional Heisenberg ferro-magnetic spin chains model with beta fractional derivative, which is transformed into the ordinary differential equation. By using the second-order complete discriminant system, the soliton solutions are presented. By utilizing the theory of planar dynamical system, the phase portraits of the dynamical system and its disturbance system are drawn. Moreover, three-dimensional, two-dimensional, and contour plots of soliton solutions for (2+1)-dimensional Heisenberg ferro-magnetic spin chains model with beta fractional derivative have also been plotted.

摘要

本文研究了具有β分数阶导数的(2 + 1)维海森堡铁磁自旋链模型的孤子解及动力学分析,该模型被转化为常微分方程。利用二阶完全判别系统给出了孤子解。运用平面动力系统理论绘制了动力系统及其扰动系统的相图。此外,还绘制了具有β分数阶导数的(2 + 1)维海森堡铁磁自旋链模型孤子解的三维、二维和等高线图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fca/11292007/e6877a6efd69/41598_2024_68153_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验