Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.
Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
Exp Mol Med. 2024 Aug;56(8):1816-1825. doi: 10.1038/s12276-024-01292-1. Epub 2024 Aug 1.
Effective translation of rare disease diagnosis knowledge into therapeutic applications is achievable within a reasonable timeframe; where mutations are amenable to current antisense oligonucleotide technology. In our study, we identified five distinct types of abnormal splice-causing mutations in patients with rare genetic disorders and developed a tailored antisense oligonucleotide for each mutation type using phosphorodiamidate morpholino oligomers with or without octa-guanidine dendrimers and 2'-O-methoxyethyl phosphorothioate. We observed variations in treatment effects and efficiencies, influenced by both the chosen chemistry and the specific nature of the aberrant splicing patterns targeted for correction. Our study demonstrated the successful correction of all five different types of aberrant splicing. Our findings reveal that effective correction of aberrant splicing can depend on altering the chemical composition of oligonucleotides and suggest a fast, efficient, and feasible approach for developing personalized therapeutic interventions for genetic disorders within short time frames.
在合理的时间内,将罕见病诊断知识有效地转化为治疗应用是可行的;在这些时间内,突变可以采用当前的反义寡核苷酸技术进行治疗。在我们的研究中,我们在患有罕见遗传疾病的患者中鉴定了五种不同类型的异常剪接引起的突变,并使用带有或不带有八聚胍树枝状大分子的磷酰二酰胺吗啉寡聚物和 2'-O-甲氧基乙基硫代磷酸酯为每种突变类型开发了定制的反义寡核苷酸。我们观察到治疗效果和效率的变化,这受到所选化学物质和针对纠正的异常剪接模式的特定性质的影响。我们的研究证明了所有五种不同类型的异常剪接都可以得到成功纠正。我们的研究结果表明,有效纠正异常剪接可能取决于改变寡核苷酸的化学组成,并为在短时间内为遗传疾病开发个性化治疗干预措施提供了一种快速、高效且可行的方法。