Institute of Biochemistry and Molecular Medicine (IBMM), University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland.
Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland.
Sci Rep. 2024 Jul 26;14(1):17659. doi: 10.1038/s41598-024-68206-z.
Bacteria rely on two-component systems to sense environmental cues and regulate gene expression for adaptation. The PhoQ/PhoP system exemplifies this crucial role, playing a key part in sensing magnesium (Mg) levels, antimicrobial peptides, mild acidic pH, osmotic upshift, and long-chain unsaturated fatty acids, promoting virulence in certain bacterial species. However, the precise details of PhoQ activation remain elusive. To elucidate PhoQ's signaling mechanism at atomic resolution, we combined AlphaFold2 predictions with molecular modeling and carried out extensive Molecular Dynamics (MD) simulations. Our MD simulations revealed three distinct PhoQ conformations that were validated by experimental data. Notably, one conformation was characterized by Mg bridging the acidic patch in the sensor domain to the membrane, potentially representing a repressed state. Furthermore, the high hydration observed in a putative intermediate state lends support to the hypothesis of water-mediated conformational changes during PhoQ signaling. Our findings not only revealed specific conformations within the PhoQ signaling pathway, but also hold significant promise for understanding the broader histidine kinase family due to their shared structural features. Our approach paves the way for a more comprehensive understanding of histidine kinase signaling mechanisms across various bacterial species and opens the door for developing novel therapeutics that target PhoQ modulation.
细菌依赖双组分系统来感知环境线索并调节基因表达以适应环境。 PhoQ / PhoP 系统就是这种关键作用的典范,它在感应镁 (Mg) 水平、抗菌肽、温和的酸性 pH 值、渗透压上升和长链不饱和脂肪酸方面发挥着关键作用,促进了某些细菌物种的毒力。然而,PhoQ 激活的精确细节仍然难以捉摸。为了在原子分辨率下阐明 PhoQ 的信号转导机制,我们结合了 AlphaFold2 的预测结果与分子建模,并进行了广泛的分子动力学 (MD) 模拟。我们的 MD 模拟揭示了三种不同的 PhoQ 构象,这些构象通过实验数据得到了验证。值得注意的是,一种构象的特征是 Mg 桥接传感器结构域中的酸性斑块与膜,这可能代表一种受抑制的状态。此外,在假定的中间状态下观察到的高水合作用支持了 PhoQ 信号转导过程中通过水介导构象变化的假说。我们的研究结果不仅揭示了 PhoQ 信号通路中的特定构象,而且由于它们具有共享的结构特征,对于理解更广泛的组氨酸激酶家族也具有重要意义。我们的方法为更全面地理解各种细菌物种中的组氨酸激酶信号转导机制铺平了道路,并为开发针对 PhoQ 调节的新型治疗方法开辟了道路。