Department of Chemistry, College of Natural and Computational Science, Dambi Dollo University, P. O. Box. 260, Dambi Dollo, Oromia, Ethiopia.
Department of Physics, Walter Sisulu University, Private Bag X-1, Mathatha, 5117, South Africa.
Sci Rep. 2024 Jul 31;14(1):17697. doi: 10.1038/s41598-024-68712-0.
In this study, Density-functional theory/Time-dependent density-functional theory (DFT/TDDFT) and Molecular docking method was used to investigate the effect of methyl acetate, tetrahydrofuran and cyanobenzylidene substituents on the electronic structure and antiviral activity of favipiravir for treating COVID-19. The DFT and TDDFT computations were employed using the Gaussian 09 software package. The values were calculated using the 6-311++G(d, p) basis set and the hybrid B3LYP functional method. Autodock vina software was used for simulations to better predictions and to validate the modified compounds' binding affinities and poses. Results of the study indicate that compounds 1 to 6 all displayed a planar structure, where the pyrazine ring, carboxamide, hydroxyl groups, and other substituents are all situated within the same plane. In addition, the energy gaps (E) of these six compounds (Cpd 1, 2, 3, 4, 5, and 6) were compared. The significant dipole moment and binding affinity achieved implies a particular orientation for binding within the target protein, signaling the anticipated strength of the binding interaction. In all six compounds, the electrophilic domain is situated in the vicinity of the amine functional group within the carboxamide compound, whereas the nucleophilic domain encompasses both the carbonyl and hydroxyl groups. The most negatively charged sites are susceptible to electrophilic interactions. In conclusion, compounds 5 and 6 exhibit a high binding affinity of the target protein, while compound 6 has a high energy gap, which could enhance its antiviral activity against the COVID-19 virus.
在这项研究中,使用密度泛函理论/含时密度泛函理论(DFT/TDDFT)和分子对接方法研究了乙酸甲酯、四氢呋喃和氰苯亚甲基取代基对治疗 COVID-19 的法匹拉韦的电子结构和抗病毒活性的影响。DFT 和 TDDFT 计算使用 Gaussian 09 软件包进行。使用 6-311++G(d, p)基组和混合 B3LYP 函数方法计算了值。使用 Autodock vina 软件进行模拟,以更好地预测和验证修饰化合物的结合亲和力和构象。研究结果表明,化合物 1 至 6 均表现出平面结构,其中吡嗪环、酰胺基、羟基和其他取代基都位于同一平面内。此外,还比较了这六种化合物(Cpd 1、2、3、4、5 和 6)的能隙(E)。这些化合物的显著偶极矩和结合亲和力表明它们在靶蛋白内具有特定的结合取向,预示着结合相互作用的预期强度。在所有六种化合物中,亲电域位于酰胺化合物的胺官能团附近,而亲核域包含羰基和羟基。带负电荷最多的位点容易受到亲电相互作用的影响。总之,化合物 5 和 6 对靶蛋白具有高的结合亲和力,而化合物 6 具有较高的能隙,这可能增强其对 COVID-19 病毒的抗病毒活性。